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For decades, machine translation between natural languages fundamentally 
relied on human-translated documents known as parallel texts, which 
provide direct correspondences between source and target sentences. The 
notion that translation systems could be trained on non-parallel texts, 
independently written in diff erent languages, was long considered unrealistic. 
Fast forward to the era of large language models (LLMs), and we now know 
that given their suffi  cient computational resources, LLMs exploit incidental 
parallelism in their vast training data, i.e., they identify parallel messages 
across languages and learn to translate without explicit supervision. LLMs 
have since demonstrated the ability to perform translation tasks with 
impressive quality, rivaling systems specifi cally trained for translation.

This monograph explores the fascinating journey that led to this point, 
focusing on the development of unsupervised machine translation. 
Long before the rise of LLMs, researchers were exploring the idea that 
translation could be achieved without parallel data. Their eff orts centered 
on motivating models to discover cross-lingual correspondences through 
various techniques, such as the mapping of word embedding spaces, back-
translation, or parallel sentence mining. Although much of the research 
described in this monograph predates the mainstream adoption of LLMs, 
the insights gained remain highly relevant. They off er a foundation for 
understanding how and why LLMs are able to translate.
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PREFACE

THE ROLE OFMEANING INMACHINE TRANSLATION

Decades of research into machine translation have targeted a single goal:
givena textmessage, express itsmeaning in another language. MThas alwaysbeen
a complex discipline, wheremany principally different approacheswere com-
peting in their ability to near this goal: word-basedMTwas “merely” replacing
words, but thatwasalreadycomputationallyhardbecause it requiredselecting
from a very large pool of possible translation counterparts. Moreover, finding
the right reordering of thewords opened the space of exponentiallymany pos-
sible candidates.

Word-based MT evolved into phrase-based MT (discussed in this book in
Section 3.3.2) by a relatively simple change: it was no longer individual words
but short sequences of consecutive words (phrases) that served as the basic
translation unit. Otherwise, phrase-based and word-based MT models were
not really touching the meaning of the sentence in any way; they were both
replacing and reordering units according to the most frequent replacements
andorderings seen in the trainingdata: theparallel corpuswith sentencepairs
where one sidewas a translation of the other and themonolingual corpus from
which frequency of word sequences in the target languagewas estimated. The
great benefit and the reason for the decade of phrase-based MT success was
its coverage and its ability to copy: If the test material, the intended inputs,
were similar enough to the parallel sentences in the training data, sequences
of up to 10 consecutivewordswere “translated” (i.e. replacedwith their target-
language counterpart) by taking a verbatim copy from the training data. Inter-
nally, within these long units, there were no errors because these units were
written by humans. PBMT just reused that, not understanding anything of the
sentence meaning. On average, and due to the repetitiveness of natural lan-
guages, this was sufficient to deliver the message to the target-language audi-
ence in an understandable way.

In contrast toword- and phrase-basedMT, there stood a linguisticallymoti-
vated approach: analyzing the source sentence in the direction of some formal
meaning representation and synthesizing the target-language sentence from
it. Except for very narrow domains, attempts to build any practical translation
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system along these lines deliberately stopped before reaching an interlingua,
an assumed language-independent representation of the meaning. The most
successful stopping point was syntax. Following various paradigms of syntac-
tic parsing, syntax-based MT was trying to reach a shallow form of meaning
representationbasedon the syntactic structure of the sentence. Thismillenia-
old scientific construct seemed like a very natural step towards grasping and
representing the meaning. However, the practical problem of syntax-based
MT was that in the training parallel corpus, the same meaning was often ex-
pressed using non-parallel syntactic structures, causing syntax-based MT to
lose training material. It had to ignore portions of sentences because the
source and target syntactic representations were impossible to decompose in
an aligned and structurally compatible way. Such a sentence pair contributed
only as an indivisible unit that could be reused as a whole but it did not offer
the system any reusable smaller units. That is why syntax-basedMThas never
been quite competitive with phrase-based MT in practical evaluations on real
data. Compared to PBMT, syntax-based MT was losing coverage of input sen-
tences and the best-performing approaches were those that actually ignored
most of the syntax, coming very close to the uninformedness of phrase-based
MT (Chiang, 2007). Similarly, our approach used a complex syntactic pipeline
(Bojar et al., 2013; Tamchyna and Bojar, 2015), but only to create a synthetic
parallel corpus demonstrating how the very input sentence might be trans-
lated, and PBMT was used as the backbone engine. Again, the meaning was
completely broken down into isolated phrases and words, and reassembled in
the target language according to the statistically favoured order.

Two stages of a revolution in MT arrived with encoder-decoder neural MT
and then specifically with the Transformer model, see Sections 3.2 and 3.3.

Deep neural networks are the technical device that allowed to directly
model the composition of the target sentence based on the source. Re-
searchers no longer need to specify how the relation between the source and
the target is captured. There are no translation units, the only given structural
element of the system design is that the target sentence is produced word by
word. Neural machine translation systems are very clever (conditional) lan-
guage models: they predict the most probable target sentence, one word at
a time, conditioned on the full source sentence. Technically, the neural net-
work consists of many layers and a continuous representation (consisting of
numerical vectors) is being created from the sequence of source words and
the current prefix of the target sentence, and gradually updated to best pre-
dict the next word in the translation. A certain form of the sentence content is
inevitably captured in these continuous representations and one can assume
that “in the middle” between the source and the target language, they consti-
tute a form of an empirical interlingua (Johnson et al., 2017).

It is important to note that neural MT not only has the chance to learn
sucha language-independent representationbut it also has the chance to avoid
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learning it. Provided with examples of source and corresponding target sen-
tences, NMT is free to learn a very shallow form of translation. It can essentially
memorize a big list of relevant target-side sequences of words (“phrases” as in
phrase-basedMT) and learn to classify which of them should be emitted at the
moment given the source words and collocations. We see this flexibility, the
option to either “understand” or “just copy” relevant short portions of training
data, as one of the so-far unrecognized elements behind the NMT success.

Touching upon the Chinese room argument by Searle (1980) as to what
it entails to “understand”, we note that the easier for a translation system is
to “just copy” (thanks to the presence of the parallel data and the match be-
tween the training and test instances), the further it is from “understanding”.
Put differently, we argue that the “true translation”, i.e. translation inevitably
handling the meaning of the sentence, arises only in unsupervised MT, i.e.
MT trained on independent monolingual data in the source and target lan-
guages. This unsupervised setting prevents the system from shallowmimick-
ing, learning just to emit memorized sequences as triggered by source obser-
vations. The learning process must discover the relation between source and
target expressions in themodels internal representations. The process of this
discovery, or the resulting discovered alignment of representations could be
possibly called “understanding”.

December 2024,

Ondřej Bojar
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1.1 LARGE LANGUAGEMODELS: FROMMT AND BACK

In recent years, Large Language Models (LLMs) have revolutionized natural
language processing (NLP), achieving remarkable advancements in tasks like
question answering, summarization, conversational artificial intelligence (AI),
or translation. It is worth noting that technically, LLMs stem from the field of
machine translation (MT): They are based on the Transformer model (as will
be discussed in Chapter 3 of this book), which was designed specifically for
the translation task and aimed primarily at computationally efficient, paral-
lelizable, training.

Standard supervised machine translation systems are trained on paral-
lel datasets, i.e. texts and their translations, where their ability to translate
comes frommany translation examples and is perfected after seeing millions
of them. However, there is a smaller subfield of MT research focusing on un-
supervised training of MT systems where the ability to translate emerges as a
result of seeing how different languages are used in their natural monolingual
setting, without translation resources carefully curated by humans. Similarly,
we witness this translation ability now in the LLMs which translate with preci-
sion comparable to the latest specializedMTsystemsalthough theywerenever
trained for this particular task.

From today’s perspective, unsupervised MT can be viewed as a bridge be-
tween traditional supervised MT and LLMs. It leveraged techniques like mul-
tilingual pre-training and representation learning, which later became cen-
tral to the development of LLMs. Unlike traditional systems, unsupervisedMT
did not depend on parallel datasets but still required sentence pairs for train-
ing. These pairs were either synthetically generated translations or automat-
ically matched from a large pool of available sentences based on their mean-
ing similarity. To access such sentence pairs, the systems utilized a combina-
tion of several models, including sentence encoders, neural MT models, and
statistical MTmodels, working together to enable translation without human-
provided parallel data.

With the advent of generative LLMs, we have seen that such engineered
combinations are no longer necessary; with the right architecture, a sufficient
number of parameters, and access to vast amounts of data, translation abili-
tiesnaturally emerge as abyproduct of large-scalemultilingual training. Since
translation is just one of the many potential abilities of generative AI, we be-
lieve that exploration into unsupervised MT offers valuable insights into the
inner workings of LLMs and their broader capabilities.

In this book, we focus on unsupervised MT to explore the ability of neu-
ral models to create a multilingual representation of meaning conceived af-
ter being exposed to unstructured and independent text data in multiple lan-
guages. When analyzing different approaches to unsupervisedMT,we operate
at a much smaller scale than current LLMs (both in terms of training data size
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and the number of model parameters). However, it allows us to study the phe-
nomenon of multilingual representation of meaning in isolation of the many
otherabilities thatmodernLLMshaveandpossiblyuncoverapieceof theblack
box that they are.

Furthermore, we address the issue of the accessibility of NLP technologies
across different languages. The success of today’s LLMs relies on the availabil-
ity of enormous amounts of high-quality textual data, which allows them to
capture the nuances, grammar, and idiomatic expressions inherent in human
language. This data requirement poses a significant challenge for languages
with low digital presence, commonly referred to as low-resource languages.

This problem was already faced before the era of LLMs. Neural machine
translation systems and other NLP tools utilizing neural networks also relied
heavily on large textual datasets. To expand beyond the high-resource lan-
guages, unsupervised machine translation emerged as a solution, providing
innovative tools to extract translation knowledge from monolingual data and
enabling progress even in the absence of large parallel datasets. This book
brings forward critical insights from unsupervised MT research, where new
methods were developed to overcome data scarcity and improve translation
quality in low-resource conditions. By revisiting these lessons, we aim to guide
thedevelopmentof LLMs that canbetter serveall languages, regardlessof their
digital footprint.

1.2 OVERVIEWOF UNSUPERVISEDMT

The problem of learning to translate without ever seeing a translation was
first tackled as a deciphering problem (Ravi and Knight, 2011) where foreign
text was viewed merely as an unknown cipher of the English text. The idea
seemed intriguing but quite unrealistic, until the pioneering work of Artetxe
et al. (2018d) and Lample et al. (2018a). It was shown that minimal supervi-
sion suffices to teach a neural model to align monolingual word representa-
tions (embeddings) and find translation equivalents. Unsupervised training
of MT systems became a hot topic both for the curiosity of a seemingly unsolv-
able task as well as for its relevance for low-resource language pairs.

The initial attemptsatunsupervisedmachine translation (UMT)applied the
newest advancements in deep neural models. However, it was quickly real-
ized that statistical phrase-based machine translation (PBMT) offered a valu-
able toolkit for unsupervised scenarios, and the performance of phrase-based
systems even surpassed that of the initial unsupervised neural models (Lam-
ple et al., 2018a; Artetxe et al., 2018b). It was only when the benefits of cross-
lingual pre-trainingwerediscovered (ConneauandLample, 2019) that theper-
formance of unsupervised PBMTmodels started to lag behind. Until today, us-
ing a hybrid approach (Artetxe et al., 2019b) where translations from a PBMT
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system are used to pre-train a deep neural system is still a relevant strategy
which, in some settings, can supersede purely neural systems.

Although the translation quality achieved by a completely unsupervised
system did not reach the level of supervised MT, the initial attempts showed
that training of machine translation exclusively onmonolingual texts is feasi-
ble. New advances significantly increased the performance, leaving the ques-
tion of the maximum attainable translation quality for an MT system trained
exclusively on monolingual corpora unanswered. In our research, we strived
tomove towards that limit by proposing new components of the unsupervised
training schedule. Our results are presented in Chapter 7.

Several authors (Marchisio et al., 2020; Søgaard et al., 2018) have pointed
out limitations of UMT, especially in the context of translation of truly low-
resource languages where we do not have gigabytes of monolingual texts to
use for training andwhere the trainingdata likely covers only limiteddomains.
To be able to draw robust conclusions, we evaluate our approach on authentic
low-resource language pairs with a presence of monolingual data but limited
or non-existent parallel texts.

This book investigates unsupervised learning strategies to find themost ef-
ficient way to exploit monolingual data for a cross-lingual signal. There are
two main directions this work will explore: (1) methods for obtaining parallel
data when authentic parallel resources are unavailable, and (2) UMT models,
their architecture, and training strategies. The twodirections are closely inter-
twined since UMTmodels are always trained using a form of synthetic parallel
data. Moreover, the underlying problembehind theUMT task aswell as the un-
supervised parallel corpusmining (PCM) task is the building of a cross-lingual
space which we can either use to initialize an MT system or to search for sim-
ilar sentences. In our analysis, we will focus on various techniques to induce
the cross-lingual space and enhance the alignment of parallel word and sen-
tence representations. We will explore the effect of multilingual training on
the quality of the representations and on the performance of UMT systems.

1.3 STRUCTURE OF THE BOOK

This book is based on the dissertation thesis of the author (Kvapilíková, 2024)
defended in February 2024. The text was slightly modified to fit the format of
a manuscript and augmented to reflect on how the field has evolved since the
thesis defence. The structure of the book mirrors the structure of the original
work.

In Chapter 2, we begin by introducing the context anddriving forces behind
our research, exploring the challenges and opportunities that have shaped our
work in unsupervised machine translation. Chapter 3 explains the underly-
ing principles and theories that we build upon, providing a solid conceptual
framework for the methodologies we employ. Following this, Chapter 4 offers
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a comprehensive survey of existing unsupervised methods in machine trans-
lation, highlighting key advancements and positioning our approach within
the broader landscape of existing methods.

InChapter 5,wedetail theprocessof generating the training corpora for our
experiments and describe the text mining methods we use to obtain pseudo-
parallel corpora of similar sentence pairs. Chapter 6 outlines the step-by-step
procedures we used to train our models, including the techniques and algo-
rithms that form the core of our unsupervised approach.

In Chapter 7, we describe the translation experiments conducted, pro-
viding a thorough analysis of the outcomes and comparing them to existing
benchmarks. We then turn to Chapter 8 where we critically assess the quality
of the translations, identify the strengths andweaknesses of the unsupervised
techniques, and consider the broader implications of our findings.
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2.1 LANGUAGE DATA RESOURCES

Language data resources refer to the various sources of information that are
used to study, process, and analyse language. In the context of machine
translation, the most relevant data resources are written text corpora, pre-
translated texts (parallel corpora), word lexicons and pre-trained models. In
other areas of linguistic research, useful resources include treebanks (for
syntactic and morphological analysis), speech corpora (for automatic speech
recognition) or other annotated corpora (for sentiment analysis, sentence sim-
ilarity search, named entity recognition, etc.).

2.1.1 MONOLINGUAL CORPORA

Amonolingual corpus is a collection of texts in a single language. For the pur-
poses of this book, a monolingual corpus is understood as a collection of texts
in a single language in plain text with no additional annotations. Out of all
NLP resource types, monolingual corpora are the easiest to obtain. Even in
many low-resource languages, it is possible to gather significant amounts of
text by automatic web crawling. The CommonCrawl1 project carries out pe-
riodic web crawls and publishes the crawled data in an open repository with
public access. The repository contains petabytes of data collected since 2008.
The quality of web-crawled corpora is dubious even after filtering (Kreutzer
et al., 2022) but for low-resource languages, it is often the only data source
available. Artetxe et al. (2022) demonstrate that in cases where there is not a
sufficient amount of high-quality curated data, the benefits of having a larger
and amore diverse corpus are worth the potential data quality issues.

Themajority ofmonolingual corpora used inMT papers is derived by auto-
matic filtering of the CommonCrawl corpus. For example, the open source OS-
CAR2 project compiled a large multilingual corpus by language classification
and filtering of the CommonCrawl with the goal of providing large quantities
of raw text to be usedmostly for pre-training of large deep learning models in
151 languages.

Monolingual corpora can come from different domains. The popularity of
online newspapers warrants a high representation of the news domain in the
crawled corpora. Newspaper articles are collected in the NewsCrawl3 corpus
which is released every year for theWMT series of shared tasks. Similarly, the
legal domain is strong due to the online legal codes, European regulations and
international treaties which are publicly available.4

1 Available at https://commoncrawl.org/.
2 Available at https://oscar-project.org/.
3 Available at https://data.statmt.org/news-crawl/.
4 Available at https://www.clarin.eu/resource-families/legal-corpora.
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2.1.2 PARALLEL CORPORA

A parallel corpus is a primary resource for standard MT training. It is a col-
lection of texts in different languages that are aligned at the sentence level.
In a parallel corpus, each sentence or phrase in one language corresponds to
its translation equivalent in another language. Parallel corpora are typically
created by professional translators or by collecting documents that have been
translated for various purposes, such as multilingual websites, official docu-
ments, or bilingual books. While most parallel corpora are bilingual, some
havemultiway alignments between all covered languages (e.g. the eBible5 cor-
pus).

Most publicly available parallel corpora are gathered on the OPUS6 web-
site for anybody to download. The largest corpora come from the mixed do-
main, but there are significant resources of specialized texts as well. Legal
texts often naturally originate in multiple languages in parallel, e.g. the ex-
tensive EuroParl7 corpus of proceedings of the European Parliament covers
all EU languages. Similarly, the EMEA8 corpus comprises documents from the
European Medicines Agency in all EU languages.

As far as low-resource languages are concerned, Tatoeba9 is a collaborative
onlineproject that aims to create amultilingual corpus of sentences and trans-
lations for underrepresented languages. It allows users to contribute sen-
tences in various languages alongwith their translations into other languages.
The corpus is continuously expanded and improved through the collaborative
efforts of volunteers from around the world. The number of translated sen-
tences in each language varies from only a couple to several thousand. Be-
sides Tatoeba, the only parallel datasets for truly low-resource languages are
often theBible (Akerman et al., 2023) or theUbuntu localization fileswhich are
small and narrowly specialized (Tiedemann, 2012). Costa-jussà et al. (2022)
compiled a multiway parallel corpus FLORES-200 of 3k sentences curated by
professional translators in 200 low-resource languages.

The lack of parallel data faced by many language pairs is the reason re-
searchers explore the options of utilizing monolingual data for MT training.

2.1.3 COMPARABLE CORPORA

A comparable corpus is a collection of texts in different languages that are
comparable in terms of genre, content and purpose. Unlike parallel corpora,
they are not sentence-aligned but they can be aligned at the paragraph or doc-

5 Available at https://github.com/BibleNLP/ebible
6 Available at https://opus.nlpl.eu/.
7 Available at https://www.statmt.org/europarl/.
8 Available at https://inventory.clarin.gr/corpus/747.
9 Available at https://tatoeba.org/.
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ument level. A popular example of a comparable corpus isWikipedia,10 where
articles on the same topic in different languages are linked but they vary in
their content as well as their length. The Wikipedia size of each language is a
good proxy of the online presence of a language and the strength of the com-
munity supporting its preservation.

In our work, we use comparable corpora to search for translation equiva-
lents to build a pseudo-parallel corpus.

2.1.4 PSEUDO-PARALLEL CORPORA

Apseudo-parallel corpus is a collection of text data that is not perfectly aligned
or parallel, but still provides useful information for machine translation and
other language processing tasks. Unlike a true parallel corpus, where the
paired sentences fully correspond to each other, a pseudo-parallel corpus con-
sists of similar but not necessarily identical texts in two ormore languages. In
the context of this work, a pseudo-parallel corpus is created by the automatic
search for parallel sentences in two monolingual and preferably comparable
corpora.

2.1.5 SYNTHETIC PARALLEL CORPORA

Synthetic parallel corpora arise by a process called back-translation (Sennrich
et al., 2016) when a trained MT system is used to translate a monolingual cor-
pus and the original sentences are coupled with their synthetic translations.
The source side of the resulting parallel corpus is usually the synthetic one
while the target side has the original authentic sentences. Using translations
from a phrase-based system to train a neural system in the opposite transla-
tion direction is an effective approach to unsupervised MT, which we explore
in Section 7.2.

2.1.6 PRE-TRAINEDMODELS

Pre-trained models refer to machine learning models that have been trained
on large amounts of text data and made available for general use, e.g. in the
HuggingFace Model Hub.11 The training process involves exposing the model
to vast amounts of text data and optimizing its parameters to learn patterns,
relationships, and representations of language. This allows the model to cap-
ture various linguistic properties, contextual information, and semantic rela-
tionships between words and sentences.

Pre-trained models have become one of the most powerful resources for
NLP applications as they allow researchers to reach state-of-the-art results

10 Available at https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2735.
11 Available at https://huggingface.co/.
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with limited computation capacity. However, their performance for underrep-
resented languages is usually subpar and many languages are not supported
at all. In spite of that, utilizing the knowledge learned from high-resource lan-
guages is an effective strategy when training a model for a low-resource lan-
guage (Zoph et al., 2016; Nguyen and Chiang, 2017; Kocmi et al., 2021). In this
work, we use large-scale multilingual models from the BERT family (Devlin
et al., 2019) as sentence encoders and we fine-tune them for better perfor-
mance on the languages of our interest. More details on pre-trained language
models will be given in Chapter 3 and later in Chapter 5.

A number of pre-trained translation models and sentence encoders was
released within the No language left behind initiative (Costa-jussà et al., 2022)
which targets low-resource languages. The translation models covering 200
languages were trained on amix of human-translated seed data and automat-
ically mined data. The process of automatic bitext mining will be introduced
in Chapter 5.

2.2 CROSS-LINGUAL INFORMATION INMONOLINGUAL DATA

Collections of texts inmultiple languages inherently contain a translation sig-
nal, even if the texts are not explicitly matched. It is possible that equivalent
sentences are concealed within the corpora, and these can be automatically
identified before the translation training starts. In such cases, we refer to the
process as the creation of a pseudo-parallel corpus in advance.

In other cases, especially when themonolingual corpora are of limited size
and the likelihoodof discoveringmatching sentences is low,we canexplore se-
mantic correspondences at the level of individual words or short phrases, con-
sidering their context. The core concept here is that across languages, similar
words tend to occur in similar contexts. While this principle may not be uni-
versally applicable across distinct cultural, climatic, or socioeconomic back-
grounds, when the corpora share a common domain, it becomes possible to
leverage this similarity to extract a word or phrase dictionary, often referred
to as a lexicon.

Such a lexicon serves as a valuable resource for generating a synthetic paral-
lel corpus. This can be achieved through word-by-word translation or by em-
ploying a phrase-based machine translation system. Although these initial
translations are far from perfect, they represent a potential source of cross-
lingual signal when true parallel data is not readily available.

It came as a surprise that multilingual language-representation models
trainedwithout any cross-lingual objective are able to uncover text correspon-
dences in monolingual data (Pires et al., 2019). This likely happens due to the
limited capacity of the models which forces them to economize and find the
right alignments between their internal representations. This form of cross-
lingual information emerges at the level of context representation and, there-
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Class #Langs #Speakers % of Total Langs Langs in Our Experiments
Dominant 7 2.5B 0.28% English, German
High-resource 18 2.2B 1.07% Czech
Low-resource I. 28 1.8B 4.42% Kazakh, Ukrainian, Georgian

Low-resource II. 241 36M 5.85% Upper Sorbian, Inuktitut, As-
samese, Khasi, Manipuri, Mizo

No-resource 2,191 1.2B 88.38% –

Table 2.1: Taxonomyof languages originally by Joshi et al. (2020)with a number of languages
per group, a number of speakers per group, and a percentage of total languages. We use it for

classification of the languages we focus on in this work.

fore, is only accessible to machine learning models. It can be leveraged by
copying the weights of the pre-trained language model into the neural MT
model (Conneau and Lample, 2019) as will be described in Chapter 6.

2.3 LANGUAGES OF THEWORLD

There are estimated tobeover7 thousand living languages spoken in theworld
today (Eberhard et al., 2023). These languages are diverse and vary widely in
terms of their structure, grammar, vocabulary and usage. Along with the well-
developed and universally supported languages with a strong speaker base,
there are languageswithout a properwriting systemandwith only a handful of
speakers left with their unique knowledge. NLP technologies strive to provide
support for speakers of low-resource languages as well as work towards the
preservation of the language itself.

Low-resource languages are those for which there is limited availability of
textual data in digital form, often due to socio-economic, cultural, or historical
factors. These languages may be spoken by millions of people but lack suffi-
cient writtenmaterial, particularly in online and digital formats. This scarcity
of data creates a substantial barrier to developing robust language models for
these languages,making it difficult to apply the sameNLP techniques thathave
been so successful for high-resource languages like English, Chinese, or Span-
ish. Many of the world’s languages are even endangered, with some estimates
suggesting that up to half of all languages could disappear by the end of the
21st century.12 CreatingNLP tools for endangered languages could potentially
help save them by preserving, revitalizing, and increasing their use in digital
spaces.

Joshi et al. (2020) distinguish six kinds of languages according to their dig-
ital status. They propose a taxonomy which is based on the amount of labeled
and unlabeled data available online for each language. According to their find-
ings, 88.38%of the2,455 considered languages fall into the last categorywhich
is completely ignored by digital language technologies. The first category,

12 Available at https://www.ethnologue.com/insights/how-many-languages-endangered/.
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Figure 2.1: World languages plotted in terms of the available textual data – rawmonolingual
(horizontal axis) and parallel English-aligned (vertical axis). Both axes are in log scale. The

rectangle indicates the area of low-resource languages that this work focuses on.

on the other hand, includes only seven languages (English, Spanish, German,
Japanese, French, Chinese, and Arabic) with a dominant online presence and
a superiority over other languages in terms of the amount of both labeled and
unlabeled data, enabling them to benefit from all NLP breakthroughs. Most
of the remaining European languages fall in the second category character-
ized by dedicated NLP communities and strong economical and political links
to the dominant languages. In this work, we mostly target the low-resource lan-
guages from the remaining two groups, spoken by almost 2 billion people in
total. A sufficient amount of unlabeled (monolingual) data and a lack of la-
beled (parallel) sentences constitute the ideal scenario for UMT training. The
languages we work with and their corresponding categories are listed in Ta-
ble 2.1.

2.4 LOW-RESOURCE LANGUAGES

In order to determine the scope of this work, we need to assess which lan-
guages are considered low-resource for the task ofmachine translation and how
many such languages there are. We gauge the quantity of parallel data acces-
sible for each language by calculating the number of English-aligned parallel
sentences found on the OPUS website, in conjunction with the supplementary
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corpora provided for theWMT translation shared tasks.13 The quantity of par-
allel sentences aligned with English serves as a rough estimate for the upper
limit of parallel sentences aligned with other languages. This is because lan-
guage pairs not involving English typically have a smaller amount of parallel
data. As a proxy for the total amount of monolingual data available, we con-
sider the Oscar corpus sizes. It must be noted that both OPUS and Oscar in-
clude uncleaned text data with a lot of noise and possible duplicates. We dis-
play the languages in terms of their quantities of labeled and unlabeled data in
Figure 2.1. The results are plotted in log scale to better illustrate the distribu-
tion of languages.

Out of the 151 languages covered by the Oscar corpus, 79 have less than 1M
uncleaned parallel sentence pairs, making them suitable candidates for unsu-
pervised training. For the purposes of this work, we call these languages low-
resource. The threshold of 1M parallel sentences is motivated by Kocmi et al.
(2021, Section 4.2.2) who shows that trainingMTmodels with fewer sentences
leads to fast over-fitting and hindered translation performance. The rectangle
in Figure 2.1 delimits the space where unsupervised pre-training techniques
are most needed for the lack of parallel data (<1M sentence pairs) and where
they are applicable for the abundance ofmonolingual data (>1Mwords for un-
supervised training). The languages to the left of the rectangle can be called
very low-resource and they cannot easily benefit from the techniques we pro-
pose due to their limited amounts of monolingual data. Many other languages
are not even plotted in the chart as they do not have any data available in the
OSCAR corpus.

2.5 THE EXTENT OF THIS STUDY

In this book, we focus on several language pairs, most of which are charac-
terized as low-resource. This section provides an overview of these language
pairs, their relevance to the experiments conducted, and essential linguistic
details (Eberhard et al., 2023).

• We train domain-specific MT models for translation from English to
Ukrainian, Kazakh, and Georgian. Kazakh, belonging to the Turkic lan-
guage family, and Georgian, belonging to the isolated Kartvelian lan-
guage family, enable us to validate our approaches across a wide spec-
trum of linguistic variation.

• We conduct experiments involving translation between English and four
low-resource Indic languages (Assamese, Khasi, Manipuri, Mizo). The
amount ofmonolingual data available for these languages is significantly
lower than for the languages in the first group, which allows us to test
the limits of our approaches in truly low-resource scenarios. These
languages are among the 22 official languages of the Republic of India

13 Available at https://statmt.org/.
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Figure 2.2: Languages used in this work in terms of the size of the available monolingual
texts. Colors reflect language families and the links between languages represent the amount

of parallel data available.

and exhibit considerable linguistic diversity. Specifically, Manipuri (also
calledMeitei) andMizobelong to theSino-Tibetan language family, Khasi
is a member of the Austro-Asiatic language family, and Assamese is part
of the Indo-Aryan branch of the Indo-European language family. As-
samese and Manipuri share a common Bengali-Assamese script.

• Inuktitut is an Eskimo-Aleut language and we use it to test our approach
to parallel corpus mining on a low-resource language with a unique
script.

• Our other experiments encompass more closely related Indo-European
languages. While the German-Czech language pair has access to sub-
stantial volumes of pre-translated texts, we employed it in our prelim-
inary experiments with unsupervised approaches. On the other hand,
German and Upper Sorbian is a language pair which represents an au-
thentic low-resource scenario where translation holds important socio-
economic significance, given that Upper Sorbian is spoken in a region of
Saxony in Germany.

Figure 2.2 illustrates the language pairs relevant for this work, their corpus
sizes and their linguistic similarity. Figure 2.3 shows the languages in terms
of their speaker base rather than their text data amounts. Comparing the two
figures allows us to judge how big a language really is (as represented by the
number of native speakers) in contrast with how strong its online presence
is. The dominance of English or German is less pronounced when measured
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Figure 2.3: Languages used in this work in terms of the number of native speakers. Colors
reflect language families and the links between languages represent the amount of parallel

data available.

by the size of their speaker base. On the other hand, Czech is an example of a
languagewhichpossessesacomparativelyabundantvolumeofdata in relation
to its number of speakerswhich suggests a strongNLP community supporting
it. Similarly, Inuktitut has only 38k speakers but a relatively big parallel corpus
of 1M languages due to the support of theNational ResearchCouncil of Canada
whichpublished theproceedings of the LegislativeAssembly ofNunavut in the
Hansard corpus.14

When training a machine translation system, we explore the possibilities
of utilizing monolingual data in other languages. However, using parallel data
in other languages for translation knowledge transfer is out of scope and the
readers are referred to Kocmi et al. (2021, Chapter 7) formore details on trans-
fer learning for low-resource languages.

14 Available at https://nrc-digital-repository.canada.ca/eng/view/object/?id=c7e34fa7-7629-43c2-bd6d-
19b32bf64f60.
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In this chapter, we describe the main foundation blocks that we build upon
later when describing the methodology of our work. We start by introducing
the concept of word embeddings andmove on to the state-of-the-art language
representation models with the Transformer architecture. We finally intro-
duce the fundamentals of phrase-basedmachine translation (PBMT) and neu-
ral machine translation (NMT).

3.1 WORD EMBEDDINGS

In order to process words using machine learning models, it is necessary to
assign them a numerical representation. The simplest way for the model to
differentiate one word from another would be by the so-called one-hot encod-
ing where a vector of length |V | is assigned to each word i of the vocabulary
| + V with vector elements zj = 0 if j ̸= i and zj = 1 if j = i. However, such
a vector treats words as mere indices in a vocabulary and does not carry any
linguistic information.

Word embeddings, on the other hand, are continuous real-valued vector
representations of words trained so that words that are semantically close are
also close in the embedding vector space. The concept stems from the distribu-
tional hypothesis (Harris, 1954)which suggests thatwords that appear in similar
contexts tend to have similar meanings. The first notion of distributed word
feature vectors was introduced by Bengio et al. (2003) who proposed them as
a remedy for the curse of dimensionality inherent to the task of languagemodel-
ing. An efficient way to obtain these vectorss was later discovered by Mikolov
et al. (2013c).

Word embeddings can also be viewed as a mapping from the high-
dimensional space {0, 1}|V | to a lower-dimensional oneRE where |V | is the size
of the vocabulary and E is the embedding dimension and E << |V |. They can
be learned by various neural models which will be introduced in the following
paragraphs.

3.1.1 STATICWORD EMBEDDINGS

Staticword embeddings are fixed-length real-valued vector representations of
words that carry semantic information. A major breakthrough was achieved
by Mikolov et al. (2013a) and their Word2Vec that learns word embeddings by
two types of models – continuous bag-of-words (CBOW) and Skip-gram. The
former learns to predict the current word based on its context (surrounding
words) while the latter learns to predict the context given the current word.
The architecture is illustrated in Figure 3.1. Models trained for other NLP
tasks, includingMT, also create their own static embeddings whichwill be dis-
cussed in Section 3.2.2 and Section 3.3.1.
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Figure 3.1: Word2Vec model architectures. The CBOW architecture predicts the current
word based on the context, the Skip-gram predicts surrounding words given the current

word.

SKIP-GRAMMODEL

Skip-gram model is a feed-forward neural network that takes input as a one-
hot vector with dimensions 1 × |V |. It has a single hidden layer that projects
the input into the E-dimensional space and an output layer with a softmax ac-
tivation function over the vocabulary of size |V |, which again outputs a one-hot
vector. Thedimensionsof thehiddenandoutputweights are |V |×E andE×|V |,
respectively.

The training task for the Skip-gram model is to predict the surrounding
words of the current word. The model is presented with a pair of words at a
time, composed of the current word in the output and one of its context words
in the output. The context is defined as the set of words within a window of
length c from the current word. Closer context words are sampled more fre-
quently to approximate the looser relationships betweenmore distant words.

Our focus does not lie in solving the task itself. Instead, we seek valuable in-
ternal representations that the model must construct in order to address the
task effectively. They are stored in the hidden layer of themodel and the word
embeddings of all words from the vocabulary are obtained by simply extract-
ing the hidden weight matrix (|V | × E).

While embeddings of entire words are useful for semantic processing and
tasks such as word similarity search, other tasks, such as machine transla-
tion, operate with smaller units (subwords). Kocmi and Bojar (2016) reach a
better performance on the Skip-gram test set by a SubGrammodel which con-
siders the word structure when training the embeddings. Similarly, FastText
(Bojanowski et al., 2017) extends theSkip-grammodelbyenriching itwith sub-
word information to reflect the morphological properties of the words. The
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FastText model represents words by the sum of the vector representations of
their character n-grams.

CONTINUOUS BAG-OF-WORDS (CBOW) MODEL

The training task behind the CBOW model is opposite to the Skip-gram. The
input to the model is several context words (e.g. 2 or 3 before and after the
current word, depending on the size of the window) which are projected to the
hidden layer and averaged. The average embedding vector is then projected
back to the output layer which should predict the current word. The dimen-
sions of the hidden and the output layer are identical to the Skip-grammodel.

According to Mikolov et al. (2013c), CBOW is faster to train than Skip-gram
and it is better suited for large corpora, but Skip-gram can better represent
less frequent words, especially when the training data is small.

3.1.2 CONTEXTUALWORD EMBEDDINGS

In contrast to static word embeddings, contextual word embeddings are a
function of the entire sentence (or any text stream) containing the given word.
They arise from the internal representations of language models. As opposed
to static embeddings which are type-level, contextual embeddings assign a
unique vector to every token being processed based on its context. In order
to get rid of the dynamic context dependency of contextual embeddings and
obtain an equivalent of static embeddings, one can simply take their average
perword type over a text corpus (or its subset). Schuster et al. (2019) show that
contextual embeddings cluster around their average anchor and polysemous
words are characterized bymulti-modal clusters.

Two important examples of pre-trained contextual word embeddings are
ELMo (Embeddings from Language Models) and BERT (Bidirectional Encoder
Representations). ELMo (Peters et al., 2018) embeddings are computed on top
of a bidirectional recurrent language model with character convolutions. The
contextual representationof each token is theconcatenationof the left-to-right
and right-to-left representations. BERT (Devlin et al., 2019) embeddings are
retrieved from the encoder outputs of a Transformer language model. More
details about the Transformer architecture will be given in Section 3.2.

3.1.3 CROSS-LINGUALWORD EMBEDDINGS

The notion behind cross-lingual embeddings resembles the theoretical con-
cept of interlingua – a space where meaning is represented regardless of the
language it is expressed in.

Static word embeddings were shown to have many favourable properties
regarding semantically meaningful geometric arrangements of word repre-
sentations which could be exploited for turning monolingual embedding vec-
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tors into a cross-lingual space. The rationale behind this is that the use of lan-
guage reflects concepts grounded in the real world. Since real-world concepts
do not change upon expression in different languages, the embedding spaces
in different languages are expected to be approximately isomorphic (Storer,
1952). Several authors (Mikolov et al., 2013b; Conneau et al., 2018a; Artetxe
et al., 2018a) leverage this property to obtain cross-lingual embeddings by lin-
ear mapping as illustrated in Figure 3.2. The idea of language isomorphism is
at the core of many UMT approaches.

Formally, if embedding spaces in different languages are perfectly isomor-
phic, there exists a linear mapping between them (Mikolov et al., 2013b). In
the presence of a bilingual seed lexicon L, the problem of finding themapping
matrix W ∈ Rdim×dim between monolingual embeddings of length dim is then
defined as

W ∗ = argmin
W ∈Rdim×dim

||WXseed − Yseed||F (3.1)

where Xseed and Yseed are the |L| × dim matrices of corresponding source em-
beddings x1, ..., x|L| and target embeddings y1, ..., y|L|, and |L| is the size of the
bilingual seed lexicon. Xing et al. (2015) show that it can be assumed that
the mapping is orthogonal which turns the problem of finding the embedding
mapping matrix W into the orthogonal Procrustes problem (Hurley and Cat-
tell, 1962) with a closed-form solution (Schönemann, 1966) given by singular
value decomposition (SVD)

W ∗ = argmin
W ∈Rdim×dims.t.W T W =1

||WXseed − Yseed||F = UV T (3.2)

where UΣV T = SVD(YseedXT
seed).

The mapping matrix W is finally used for post-hoc alignment of all em-
beddings x1, ..., x|Vsrc| from the source language vocabulary Vsrc into the tar-
get language embedding space. If the embedding spaces are at least approx-
imately isomorphic, the resulting embedding space in Rdim populated by tar-
get embeddings yj , j = 1, . . . , |Vtgt| and aligned source embeddings Wxi, i =
1, . . . , |Vsrc| is cross-lingual and can be used for finding word translation pairs
based on their vector similarity score, e.g. cosine similarity.

However, several authors (Søgaard et al., 2018; Ormazabal et al., 2019; Pa-
tra et al., 2019; Vulić et al., 2020) criticize this theoretically valid approach for
not having sufficient ground in real-life situations. They argue that the un-
derlying assumption of the isomorphism of embedding spaces is frequently
not met, particularly in scenarios where languages and domains exhibit sig-
nificant dissimilarities, as is frequently the case in low-resource contexts. Ac-
cording to Søgaard et al. (2018), isomorphism is also influenced by the type
and parameters of the word embedding algorithm, and they stress the impor-
tance of the same configuration on both sides. They are skeptical about their
use for unsupervised translation. However, when domain-balanced corpora
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Figure 3.2: A sketch of the idea by Conneau et al. (2018a) of mappingmonolingual word em-
beddings to a common cross-lingual space.

are available, the linear mapping approaches work reasonably well (Mikolov
et al., 2013b) even in unsupervised conditions (Conneau et al., 2018a; Artetxe
et al., 2018a). Unsupervised mapping techniques which do not count with a
manually created bilingual seed lexicon L for supervision will be described in
Chapter 6.

3.2 TRANSFORMER LANGUAGEMODELS

The Transformer model (Vaswani et al., 2017) was proposed as a new solu-
tion to sequence-to-sequence modeling tasks which were previously tackled
by recurrent neural networks (RNNs) with gated recurrent units (GRU) (Chung
et al., 2014) and long short-term memory (LSTM) (Hochreiter and Schmid-
huber, 1997) cells. Recurrent models process text auto-regressively, one to-
ken at a time, and the time dependency is modeled by the previous hidden
states of the model which serve as an additional input to the recurrent layers.
RNNs reached impressive performance both in language modeling and ma-
chine translation (Mikolov et al., 2010; Sutskever et al., 2014). However, RNNs
struggle with the modeling of long dependencies and remembering earlier
contexts. The problem was partially alleviated by using the attention mech-
anism (Bahdanau et al., 2015) where the model only attends to the part of the
input that is relevant for generating the output. The Transformer model goes
even further and removes the recurrent part of the model entirely, claiming
that theAttention isAll YouNeed (Vaswani et al., 2017). Thenewarchitecturepro-
cesses one sentence as a whole rather than token-by-token, which improves
the ability of themodel to remember the context and allows parallel computa-
tion which significantly reduces the training time.

In the following section, we will introduce the theoretical foundations be-
hind the functioning of the Transformer models, as they will be used in our
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experiments throughout this book. We give a brief overview of the architec-
ture; for more detailed information please refer to Vaswani et al. (2017).

3.2.1 ARCHITECTURE

The Transformer was introduced as an encoder-decoder model intended for
machine translation. For languagemodeling tasks it can also be used as a solo
encoder or a solo decoder.

The encoder-decoder architecture is composed of a stack of encoders and
a stack of decoders as illustrated in Figure 3.3. The role of the encoder is to
process the source sentence and return a deep bidirectional representation
vector for each token of the sentence. The role of the decoder is to process the
encoded source sentence and generate a new one. In addition to the encoder
representations of the source text, the decoder sees the target words it had al-
ready generated.

ENCODER

The encoder encodes the input sentence of length len by passing it through a
stack of encoder blocks. The depth of the model is governed by the number
N of encoder blocks, each of which is composed of a multi-head self-attention
layer with M heads and a feed-forward layer, with layer normalization after
every layer and residual connections in between. Dropout (Srivastava et al.,
2014) is applied before each layer normalization.

The dimensionality dim of the model is one of the model hyperparameters
and it is the length of the per-token vectors which flow between the blocks
of the model. One encoder block is also sometimes referred to as one en-
coder layerwhich has two sublayers. Formally, the output of one encoder layer
Enc(X) given the previous-layer sentence representation X ∈ Rlen×dim is cal-
culated as

Enc(X) = LayerNorm(X ′ + FFN(X)) (3.3)

X ′ = LayerNorm(X + MultiHeadAtt(X)) (3.4)

FFN(X) = Θ(XW1 + B1)W2 + B2 (3.5)

where W1 ∈ Rdim×4dim, W2 ∈ R4dim×dim and their respective biases B1, B2
are the parameters of the feed-forward network whose hidden dimension is
usually four times the model dimensionality dim. Θ(x) is a ReLU or GELU
(Hendrycks and Gimpel, 2017) activation function. When calculating self-
attention for the first encoder block, the previous-layer representation X

refers to the input embeddings.
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Figure 3.3: Illustration of the full Transformer encoder-decoder architecture.

Source: Vaswani et al. (2017)
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DECODER

Thedecoder typically has the samenumber of blocks (layers)N as the encoder.
It has an almost identical structure to the encoder, but the decoder blocks in-
clude an additional multi-headed cross-attention layer in the middle that at-
tends to the encoder representations of the source sequence.

The input to the decoder is the encoder output and the target sequence of
tokens. The first layer is always an embedding layer enriched with positional
encoding andoptionally an additional sequence type embedding or a language
embedding. The final decoder output is passed on to a linear layer with a soft-
max activation function over the output dictionary. The weight matrix of the
linear layer canbe thought of as an output embeddingmatrix and itwas shown
to be beneficial to tie it to the input embedding matrix and update the two to-
gether (Press andWolf, 2017).

3.2.2 INPUT EMBEDDINGS

The input text stream is fed into themodel as a sequence of tokens (x1, . . . , xlen)
represented by their vocabulary indices. The first step the model performs is
encoding the input tokens using a learned token embedding matrix W T E ∈
V × dim where V is the vocabulary size.

Furthermore, as the Transformer model does not rely on any recurrence,
theorderingof the sequence tokensmustbemodeledexplicitly bypositional en-
coding. It can be done either by learning a position embedding matrix W P E ∈
Rmax_len×dim where maxlen is the maximum sequence length or by using pa-
rameterless sinusoidal encoding to calculate the values of W P OS_EMB accord-
ing to

W P E(pos; 2i) = sin(pos/100002i/d) (3.6)

W P E(pos; 2i + 1) = cos(pos/100002i/d) (3.7)

where pos is the position being encoded.
In multilingual tasks, it may be beneficial to provide the model with infor-

mation about the language of the input sequence by embedding its language
id using a language embedding matrix W LE ∈ Rnlangs×dim where nlangs is the
number of languages known to the model.

The final input embeddings X ∈ Rlen×dim are calculated as a sum of token
embeddings, position embeddings, and language embeddings (if applicable).

X = Emb((x1 . . . xlen), W T E) + Emb((1, . . . , len), W P E)+
+ Emb((lang, . . . , lang), W LE) (3.8)
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Figure 3.4: Visualization of the inner workings of the self-attention layers.

Source: Vaswani et al. (2017)

For a sequence of non-negative indices seq, Emb(seq, W ) ∈ Rlen×dim refers
to the output of an embedding layer defined by a lookupmatrix W .

Finally, dropout is applied to the normalized input embeddings.

3.2.3 SELF-ATTENTION

The key concept behind the Transformer architecture is the self-attention
which is illustrated in Figure 3.4. The purpose of self-attention is to determine
whether to use the information about token j while encoding or decoding to-
ken i. To that end, it needs to score eachword of the input sentence against the
current word to determine howmuch focus to place on other parts of the input
sentence.

The attention layer is composed of three sets of matrices with dimensions
dim × dk that need to be trained: query matrix W Q, key matrix W K , and value
matrix W V . The embedding dimension of the model dim and the attention di-
mension dk are hyperparameters. Multiplying a token representation vector
X with these three matrices yields three new sets of vectors: queries (Q), keys
(K), and values (V ). The attention score is computed as the dot products of the
query with all keys, divided by the square root of the length of the key vector
dk. Finally, softmax is calculated to obtain the probability weights on the value
vector where a zeroweight on a particular positionmeans no information flow
between the two tokens.

Formally, the calculation illustrated in Figure 3.4 is the following
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Z = Att(Q, K, V ) = softmax(QKT /
√

dk)V
where Q = XW Q; K = XW K ; V = XW V (3.9)

where X ∈ Rlen×dim is the previous-layer representation of the sequence
and Z ∈ Rlen×dk is the attention representation of the sequence.

Transformer attention is modeled to have multiple heads, i.e. multiple sets
of queries Qi, keys Ki, values Vi, and their respective trainable matrices, each
of which yields a new sequence representation Zi in a separate subspace. The
outputs are concatenated and projected again as illustrated in Figure 3.4. That
way themodel can capturemultiple types of relationships betweenwords, e.g.
on the semantic or the syntactic level. For a number of heads M and a train-
able matrix W O ∈ RMdk×dim, the multi-head attention output is calculated as
follows

MultiHeadAtt(X) = Concat(Z0, . . . , ZM )W O

where Zi = Att(XW Q
i , XW K

i , XW V
i ) (3.10)

The Transformer decoder uses multi-head masked self-attention. When de-
coding thewordn of a target sentence of length lentgt, thewords (n+1, . . . lentgt)
are masked to prevent the self-attention layer to consider information about
tokens that have not yet been generated.

The information flow between the encoder and the decoder of a full Trans-
former model is facilitated by multi-head cross-attention layers. They work
identically to the self-attention layers, only there are two inputs into each
cross-attention layer – final encoder representations of the source (Xenc) and
previous-layer decoder representations of the target (Y enc). Intuitively, for
each target word that is being generated, the cross-attention can attend to any
source token that it finds relevant. Moreover, it can attend to different tokens
in each head. The Equation (3.9) still applies but the calculation of the queries,
keys, and values for i ∈ (1, M) is the following

Qi = Y encW Q
i ; Ki = XencW K

i ; Vi = Xenc
i W V (3.11)

3.2.4 UNSUPERVISED PRE-TRAINING

The Transformer architecture and the efficiency of its training allow pre-
training on large amounts of unlabeled text data to learn the statistical pat-
terns, relationships, and structures present in the language. Soon after the in-
troductionof theTransformerarchitecture, bigNLPplayers startedpublishing
large-scale NLP models pre-trained on large amounts of non-annotated data,
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Figure 3.5: Schematic comparison between BERT, GPT and BARTmodels.

which later becameknownas Large LanguageModels (LLMs). Suchmodels in-
clude BERT by Google (Devlin et al., 2019), GPT by OpenAI (Brown et al., 2020),
RoBERTa (Liu et al., 2019) or BART (Lewis et al., 2020) by Meta AI. For many
tasks across the NLP field, fine-tuning pre-trained models led to state-of-the-
art results with a fraction of resources (Devlin et al., 2019). After the introduc-
tion of few-shot learning (Brown et al., 2020) and the integration of reinforce-
ment learning from human feedback (Ouyang et al., 2022), generative LLMs
caused a paradigm shift from specialized NLP systems to general-purpose AI.

In this section, we present themost common pre-training strategies where
training data is trivially generated from rawmonolingual texts. Unsupervised
pre-training can be applied to only the encoder (e.g. BERT), only the decoder
(e.g. GPT), or the entire encoder-decoder model (e.g. BART), and the training
objectives differ accordingly as illustrated in Figure 3.5. While the encoder-
only models are designed to create vector representation of text, enabling
large-scale search and retrieval based on semantic similarity, the decoder-
basedmodels are used for text generation.

The internal representations, which are the focus of our study, are formed
during the unsupervised pre-training phase. The training strategies used to
teach the language models to follow instructions and provide meaningful re-
sponses (i.e. reinforcement learning from human feedback) or to learn from
examples (i.e. few-shot learning) are outside of the scope of this book.

The Causal Language Modeling (CLM) training objective can be used for
both encoder-only models and decoder-only models. The task consists of
modeling the probability of a word given the previous words in a sentence
P (wt|w1, . . . , wt−1, θ) with model parameters θ. This is the traditional objective
for language generation. During training, we optimize the maximum likeli-
hood of the next word given the context. Themodel is able to attend to the left
context of themaskedword and never sees the right context with future words
whichhavenot yet beengenerated. The training isusuallyperformedonfixed-
length text streams. TheGPT family of pre-trainedTransformerdecodersuses
the CLM pre-training objective.
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Figure 3.6: Cross-lingual languagemodel design for trainingwith themasked languagemod-
eling (MLM) objective (Conneau and Lample, 2019).

The Masked Language Modeling (MLM) training objective is meant for
encoder-based Transformer models where the model is trained to predict in-
dividualwords rather than generate the full sequence. It encourages the learn-
ing of a bidirectional context of words. It is inspired by the Cloze test on the
readability of corrupted text (Taylor, 1953) commonly used in student assess-
ment of learning a foreign language. Random tokens of a word sequence are
masked and the task for the model is to fill in the missing tokens given the
context. During MLM training used for BERT pre-training, 15% of tokens are
randomly sampled to be either replaced by the [MASK] token (80%of time), re-
placed by a random token (10%of time), or not changed at all (10%of time). An
extra headwith a softmax linear layer is built on top of the encoder to select the
most probable word from the vocabulary for eachmasked position. The train-
ing is usually performed on fixed-length text streams.

In contrast to a causal (left-to-right) language modeling objective, MLM re-
lies on the bidirectional nature of a Transformer encoder. The bidirection-
ality is achieved by the self-attention layers where the encoder sees both the
left-hand-side and the right-hand-side context of themasked word. The BERT
family of pre-trained Transformer encoders uses theMLMpre-training objec-
tive.

Denoising Autoencoding (DAE) is a training strategy meant for pre-
training the entire encoder-decoder model. It was proposed by Vincent et al.
(2008) and later customized for NLP by Lample et al. (2018a) and Lewis et al.
(2020)who pre-trained and published the popular BARTmodel. Denoising au-
toencoding entails corrupting the input with a specific noise and training the
model to recover the original. The purpose of the input noise is to encourage
the model to internally create a high-level representation of the text by simu-
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lating a situationwheremeaning needs to be preservedwhile the input cannot
be trivially copied.

The following strategies can be used in the noise function
1. tokenmasking, where randomtokens aremaskedwith the [MASK] token;
2. token deletion, where random tokens are deleted;
3. text infilling, where random sequences of different lengths (sampled

from the Poisson distribution with λ = 3) are sampled and replaced by
[MASK] token (for 0-length sequences, [MASK] token is inserted );

4. token shuffling, where a randompermutation within a specified window
length is applied to the input sentence;

5. sentence permutation, where a random permutation is applied to sen-
tences within one training sample;

6. document rotation, where the initial token is selected randomly from the
training sample and put at the start, moving the preceding tokens at the
end of the model.

Lample et al. (2018a) use token deletion and token shuffling; Lewis et al.
(2020) use all strategies except for token shuffling and report a crucial role of
tokenmasking and token deletion, and poor performance of sentence permu-
tation and document rotation.

3.2.5 MULTILINGUAL PRE-TRAINING

The unsupervised training described in the previous paragraphs can also be
performedmultilingually. Themultilingual BERT (mBERT) andXLM (Conneau
and Lample, 2019) were trained as the multilingual versions of BERT on the
entire Wikipedia dump on ∼100 languages. XLM-R (Conneau et al., 2020) was
trainedas themultilingual versionofRoBERTaon the largeCommonCrawl cor-
pus.

Multilingual pre-trained models are immensely popular for their multilin-
gual text representations as well as their capabilities to transfer downstream
task knowledge to new languages. The language ID information can be passed
to the model by an initial extra language ID token (e.g. mBART) or via the lan-
guage embedding layer (e.g. XLM) but somemodels treat all text the same, re-
gardlessof the language. Wewill givemoredetails onmultilingualpre-training
in Chapter 6.

3.2.6 INTERNAL REPRESENTATIONS

Internal representations from large language representation models are a
valuable source of information on the inner functioning of the Transformer
models. Furthermore, they can be extracted and used as contextual embed-
dings for various purposes.

A sentence is processed by a Transformer encoder as a sequence of tokens
and the encoder representations of each token can be understood as its con-
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textual embeddings. The contextual character of the embedding is reached
by the self-attention layer which enriches each token vector with the infor-
mation about the surrounding words. Such enrichment occurs in every en-
coderblock. Theenrichedembeddingsarenormalizedandprocessed through
a feed-forward network before they are passed to the next block.

Contextual embeddings can be retrieved from any layer of any pre-trained
Transformer model. Jawahar et al. (2019) show that different encoder lay-
ers represent different linguistic phenomena. They conclude that surface and
syntactic features lie on the bottomandmiddle layers, while semantic features
of words lie on the top layers.

3.3 MACHINE TRANSLATION

In the early days of natural language processing, machine translation was ap-
proached using a great number of hand-crafted rules designed to cover the
extremely complex nature of translation known to human translators. Later
in the 1990s, it was replaced by data-driven approaches which use machine
learning techniques to teach the model directly from a large corpus of pre-
translated texts.

Before 2014, the standard approach to MT was statistical PBMT, where n-
grams in the source and target languages weremodeled and aligned based on
their number of commonoccurrences. The advent of neural networks lead to a
dramatic change in the MT field and a complete change of paradigm from sta-
tistical phrase-based systems to neural encoder-decoder models (Bahdanau
et al., 2015; Sutskever et al., 2014). In 2017, the state-of-the-art in MT was
reached by the Transformer architecture which replaced recurrent neural
models. In Section 3.2.4, we introduced the unsupervised training strategies
for Transformer models. Here we will describe how they can be trained for
supervised machine translation.

3.3.1 NEURALMACHINE TRANSLATION

NMTmodels are sequence-to-sequencemodels which utilize neural networks
to learn themapping between the source and the target language. Theymodel
the taskofMT inanend-to-end fashionrelyingonlyonsentence-alignedparal-
lel texts with no hand-crafted features or specialized modules. Different neu-
ral model architectures are possible but we work exclusively with the Trans-
former models as presented in Section 3.2.1.

From the research point of view, NMT includes three main questions: how
to design the network architecture, how to train it, and how to use it for infer-
ence. In this work, we rely on the state-of-the-art design and inference tech-
niques for supervisedMT andwe contribute novel approaches on how to train
the model parameters frommonolingual data only. Supervised NMT training
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is introduced in this section to provide the foundations of our work, while the
specifics of unsupervised MT training will be described later in Chapter 6.

TOKENIZATION AND VOCABULARY

NMT is an open vocabulary problem that needs to be solved with a fixed-size
vocabulary defined prior to the training. The right balance between the flexi-
bility offered by a large vocabulary and the constraint posed by the model ca-
pacity can be struck using one of the existing subword approaches. In contrast
to using complete word tokens, employing subword units reduces the size of
the vocabulary and eliminates the occurrence of unknownwords in the trans-
lated output.

Subword-based tokenization first segments the input texts into a group of
characters that donot necessarily correspond to full words. Afixed vocabulary
of subwordunits and individual characters ensures that rarewords canbe rep-
resentedby themodel rather thanbeing taggedunknown, although theymight
be treated merely as a list of characters. Although the subword units are cre-
ated algorithmically without any hand-crafted rules, sometimes they reflect
the morphological structure of a word.

The BPE algorithm (Sennrich et al., 2016) is a data compression algorithm
originally described by Gage (1994). When applied to text data, it iteratively
replaces the most common pair of consecutive characters with a new symbol
that does not occur in that data. This procedure is repeated for a givennumber
of iterations or until a pre-defined vocabulary size is reached. Eventually, the
most frequent words are represented as a single token while rare words are
split into several more common subword units. The algorithm can be applied
to the concatenation of the source and the target corpora to obtain a shared
vocabulary of subwords.

EMBEDDINGS

It was explained in Section 3.1 that machine learning models work with num-
bers rather than words. The same applies to NMT models which need to first
assignanumerical vector (static embedding) to each tokenof the vocabulary to
be able to process the tokenized text. NMTmodels create their own fixed em-
beddings in the initial layer, known as the embedding layer. This layer assigns
a learnable dense vector to each word in the vocabulary and these vectors are
updated throughout the training process. In Transformer systems, the input
and output embeddings are usually shared which requires a shared vocabu-
lary for the source and target languages.



3 NLP FUNDAMENTALS 45

ARCHITECTURE

The state-of-the-art MT architecture is the encoder-decoder Transformer
which was described in Section 3.2.1. Themost commonly used architectures
are base (6 layers in both the encoder and decoder, 8 self-attention heads with
dimension dk = 64, embedding size 512, and hidden size 2048) and big (6 lay-
ers in both the encoder and decoder, 16 self-attention heads with dimension
dk = 64, embedding size 1024, and hidden size 4096).

TRAINING

Supervised machine translation is trained on pairs of parallel sentences with
a cross-entropy training objective, where the model is penalized every time
it predicts a different word than the reference translation. The loss over the
parallel corpus D is defined as follows

L(θenc, θdec) = −
∑

(x,y)∼D

|y|∑

i=0
log(p̂(yi)) (3.12)

where (θenc, θdec) are the trained model parameters, (x, y) is a sentence pair
sampled from the parallel data set D, and p̂(yi) is the predicted probability of
token yi. Themodel is trained tominimize the negative log-likelihood over the
training corpus

θ∗
enc, θ∗

dec = argmin
θenc,θdec

L(θenc, θdec) (3.13)

using stochastic gradient descent (SGD) with adaptive learning rate (Adam)
(Kingma and Ba, 2015).

BACK-TRANSLATION

Back-translation is a data augmentation method for MT that allows using
monolingual texts to synthesize a parallel corpus and expand the translation
training data (Sennrich et al., 2016). It uses the trained MTmodel to translate
monolingual texts, therebycreatinganadditionalparallel corpus tobeused for
further training of themodel. The customarypractice is to utilize the synthetic
side of the corpus as the source input to the model. It was shown that several
iterations of back-translation can significantly improve the results. The unsu-
pervisedMTgreatly relies on the concepts of back-translation. More details on
the specifics of the unsupervised training will be given in Chapter 6.

DECODING

Whenusinga trainedmodel fordecoding,wegenerate tokensautoregressively
based on the output probability distribution given the input sentence x. The
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optimal way would be to find a translation with the highest probability. How-
ever, the search space for finding the candidate translation is large and ex-
pandswithnewhypothesesafter generatingeachnewcandidate token. There-
fore, local search algorithms are used to reduce the search space. The greedy
search algorithm always selects the next tokenwith the highest probability and
does not revise its choices. The beam search, on the other hand, keeps track
of the most promising candidates and prunes less likely ones as the decod-
ing progresses. It remembers b previous hypotheses and expands them with
b most likely states until the expanded sentence ends or the maximum length
is reached. The final translation is the one with the highest probability. In this
work, we use beam search with beam size b = 4.

3.3.2 PHRASE-BASEDMACHINE TRANSLATION

In contrast to the end-to-end nature of NMT, statistical phrase-based systems
rely on several modules to take care of the translation modelling task. Each
module is estimated based on phrase occurrences and alignments from the
parallel corpus. Although PBMT systems were replaced by NMT models for
standard MT applications, they can still prove useful in low-resource con-
ditions and for translation from monolingual data only. It has been shown
(Artetxe et al., 2019b) that it is possible to infer a phrase table in a completely
unsupervised way and build a PBMT system around it. Therefore, we briefly
introduce the phrase-based systems here as well.

APBMTmodel (Koehnetal., 2003) is a log-linearprobabilitymodel that cap-
tures the probability of the target sentence being the translation of the source
sentence. To estimate this model, input texts are aligned at the token level
using a specific tool, e.g. GIZA++ (Och and Ney, 2003), divided into phrases
(n-grams), and assembled into a phrase table along with their frequencies es-
timated from the parallel training corpus. The log-linear model incorporates
the following components:

• phrase translation probability (estimated based on the number of times
a phrase pair was observed in the aligned parallel corpus);

• language model (estimated based on the frequencies of individual n-
grams observed in the source and target corpora and their backoff prob-
abilities (Katz, 1987));

• distortionmodel (penalizing candidate translations with excessive word
reordering);

• word/phrase count penalty (balancing overall sentence length and the
number of phrases it is composed of).

Each of the features above is complemented by a default weight before en-
tering themodel. The weights are tuned using theMinimumError Rate Train-
ing (MERT) (Och, 2003) tomaximize the BLEU score of translation quality on a
small set of parallel sentences (development set).
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Figure 3.7: Training of an PBMTmodel: estimation of bidirectional word alignment, phrase
extraction, estimation of phrase-based features

Formally, the probability of a sentence tgt being the translation of a sen-
tence src is the following

p(tgt|src) =
exp

∑
i λifi(tgt, src)∑

tgt′ exp
∑

i λifi(tgt′, src) (3.14)

where fis are the features listed above, λis are the feature weights, and tgt′ it-
erates over all possible translation candidates.

When training the model, the training data is first tokenized, truecased
and aligned. Individual features of the model are then statistically estimated
from the training data set. Finally, the feature weights are tuned to max-
imize the translation quality on a development data set. In the decoding
phase, beam search is employed to produce the most likely sentence by com-
bining translation candidates for individual phrases, considering their log-
probability scores.

The Moses (Koehn et al., 2007) toolkit with external language modelling
tools is used for PBMTmodel training and decoding.

3.3.3 MACHINE TRANSLATION EVALUATION

Machine translation is evaluated using a combination of automated metrics
and human evaluations. In this work, we use the following automatic metrics
for evaluation, namely BLEU, COMET and chrF++. Manual evaluation is used
for qualitative analysis of the translations.
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BLEU SCORE

Automated evaluation of machine translation output quality can be accom-
plished using the BLEUmetric (Papineni et al., 2002) which assesses the can-
didate translation by comparing it to the reference translation and assigning
a score based on the number of overlapping word n-grams of order 1 up to N .
While BLEUhas its limitationsmostly due to the fact that there is never a single
correct translation, it has showna sufficient correlationwith human judgment
and it is widely utilized for MT evaluation.

BLEU is calculated as

BLEU = BP · e
∑N

n=1
λi log pi (3.15)

where N = 4 is the order of the longest considered n-gram, λi = 1/N , pi is the
modified n-gram precision and BP is the brevity penalty defined as

BP =

{
1 if c > r

e1−r/c if c ≤ r
(3.16)

where r and c are the number of tokens in the reference and candidate trans-
lation, respectively.

CHRF++

The character n-gram F-score (chrF++) by Popović (2017) is another auto-
mated metric used for evaluating the quality of translation. It measures the
similarity between a machine-generated translation and one or more refer-
ence translations based on the combination of a character-level n-gram over-
lap and a word-level n-gram overlap.

The chrF metric (Popović, 2015) was originally designed to address some
of the limitations of other automated metrics like BLEU which exclusively fo-
cus on word-level n-gram overlap. Since chrF operates at the character level,
it canmore adequately assess languageswith complexmorphology, languages
with agglutinative or inflected forms, and languages with significant word or-
der variations. Popović (2017) introduced an improved chrF++metric by inte-
grating a word-level overlap score.

For both character-level n-grams and word-level n-grams, the calculation
of theF-score inEquation (3.17) isbasedon thepercentageofn-grams fromthe
reference covered by the hypothesis (n-gram recall ngrR) and the percentage
of n-grams from the hypothesis covered by the reference (n-gram precision
ngrP). Character n-gramsmay exceed word boundaries as spaces are ignored.

ngrF = (1 + β2) ngrP · ngrR

β2ngrP + ngrR
(3.17)
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The values of ngrR and ngrP are averaged over all n-grams from n = 1 to N

where the default setting is N = 2 for words and N = 6 for characters. The pa-
rameter β gives higher importance to recall over precision and is commonly
set to β = 2. The word-level F-score and the character-level F-score are aver-
aged to produce the final chrF++ score.

COMET

COMET (Cross-lingual Optimized Metric for Evaluation of Translation) by Rei
et al. (2020) is a framework for trainingMTevaluationmodels that can function
as metrics. It comprises neural models designed to predict human evaluation
ofMT quality and thus overcome the problemof automatedmetrics (e.g. BLEU
or chrF++) that do not adequately correlate with human judgment. COMET
provides scores ranging from 0 to 1 with a value of 1 signifying a perfect trans-
lation. We use themodel trained on the Direct Assessment (DA) (Grahamet al.,
2015) scores as collected in WMT22 (wmt22-comet-da).

BOOTSTRAPPING

Bootstrapping is a statistical resampling technique that canbeused toevaluate
machine translation systems with statistical confidence (Koehn, 2004). The
bootstrapping process entails the following steps.

1. Randomly selecting N translations from both the MT output and the ref-
erence translations, with replacement (resampling) where N is the size
of the original test set.

2. Calculation of the evaluation metric (e.g., BLEU) for the resampled set of
translations.

3. Repeating the resampling andmetric calculation processmultiple times
(we repeat 1,000 times) to generate a distribution of metric scores.

We can calculate confidence intervals from the distribution of metric scores
obtained through bootstrapping, These intervals provide an estimate of the
rangewithinwhich the truemetric score is likely to liewhichhelps inassessing
the reliability of the evaluation.

Bootstrapping helps account for variability in evaluationmetrics due to the
randomness in the selection of sentences and translations. It provides amore
robust understanding of the machine translation system’s performance and
can be particularly useful when the evaluation dataset is limited or when tra-
ditional statistical assumptions might not be met.

In thiswork, weuse bootstrapping for theBLEUand the chrF++ calculation.
We set the number of bootstrap resamples to 1,000.
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Figure 4.1: Taxonomy of UMTmodels.

To organize the related work in the area of UMT, we devise a taxonomy that
maps theapproaches. Wecategorize themethods intomodel-centric anddata-
centric, following the conventional approach in domain adaptation models.
Model-centric approaches focus on the particularities of the system design
and architecture, initialization of the model parameters, training objectives,
and decoding strategies. Data-centric approaches focus on the data that are
used for training the system, e.g. multilingual data, mined pseudo-parallel
data, or back-translated synthetic data. Figure 4.1 illustrates our taxonomy
of unsupervised MT approaches.

4.1 MODEL-CENTRIC APPROACHES TO UMT

Unsupervised machine translation was first approached by Artetxe et al.
(2018d) and Lample et al. (2018b). They proposed unsupervised training tech-
niques for both PBMT and NMT to extract all necessary translation informa-
tion frommonolingual data. What followed was an overflow of new ideas and
improvements upon the initial work which will be listed in the following sec-
tions.

4.1.1 MODEL ARCHITECTURE

PHRASE-BASEDMTMODELS

A bilingual lexicon can be induced from a bilingual embedding space cre-
ated without parallel data (Section 6.1). The simplest form of unsupervised
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translation is a word-by-word translation using such a bilingual lexicon. Kim
et al. (2018) propose improving unsupervisedword-by-word translation by in-
tegrating the surrounding context with a language model.

Lample et al. (2018b); Artetxe et al. (2018c) propose unsupervisedmethods
for creatinga full PBMTsystem. In theabsenceofparallel trainingdata, the ini-
tial phrase table is induced from a cross-lingual n-gram embedding space ob-
tainedbyunsupervisedpost-hocalignmentofmonolingual embedding spaces
(Conneau et al., 2018a; Artetxe et al., 2018a). The translation probabilities are
approximated from the cosine distances of candidate n-grams in the cross-
lingual embedding spaces. The authors create MT systems in both directions
to allow further improvements by back-translating the monolingual training
corpora. Artetxe et al. (2018b) also use back-translated data to tune the hyper-
parameters of the PBMT model while Lample et al. (2018b) use their default
values. Artetxe et al. (2019b) improve the training by adding subword infor-
mation to training the cross-lingual embeddings. Furthermore, they propose
an improved strategy for tuning the hyperparameters.

Artetxe et al. (2019a) use an existing PBMT system to extract a bilingual lex-
icon from back-translated data and conclude that the word translation accu-
racy ishigher thansimply searching forwordpairs in theoriginal cross-lingual
embedding space.

NEURALMTMODELS

The unsupervised NMTmodels have an encoder-decoder architecture. In or-
der to produce language-neutral representations, they are designed to share
parameters for both language directions. Artetxe et al. (2018d) employ a single
encoder and language-dependent decoders while Lample et al. (2018a) share
both the encoder and the decoder, with the only language-dependent com-
ponent of the network being the embedding matrices. Conneau and Lample
(2019) use a joint vocabulary for the source and the target language and share
even the embeddings, following the multilingual MT design of Johnson et al.
(2017).

Other authors go beyond the vanilla encoder-decoder structure. Li et al.
(2020b) use a pre-trained cross-lingual model (XLM) as an additional encoder.
They let their NMT model interact with the XLM encoder representations us-
ing the attentionmechanism in all layers of both the encoder and the decoder.
Üstün et al. (2021) propose to use denoising adapters – adapter layers with a
denoising objective which are placed on top of a pre-trained multilingual de-
noising autoencoder and trained separately on monolingual data. The cross-
attention of the model is also trained separately on an auxiliary parallel cor-
pus. The approach is modular and allows to incrementally incorporate new
languages. It requires auxiliary parallel data but it is unique in that it com-
pletely relieves the model from the computation burden of back-translation.
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GENERATIVE LARGE LANGUAGEMODELS

Alongside unsupervised MT approaches, we present several generative large
language models with translation capabilities in low-resource languages. Un-
like encoder-decoder NMT systems, generative LLMs use a decoder-only ar-
chitecture with billions of parameters. GPT-3 (Brown et al., 2020), GPT-4
(OpenAI et al., 2024) or LLaMA-3 (Touvron et al., 2023) are primarily English-
focused models, but they have shown multilingual capabilities due to their
training on a diverse dataset that includes multiple languages. While not
specifically designed formultilingual use, they can handle text generation and
translation in several languages reasonably well.

One of the first truly multilingual generative LLMs was BLOOM (Scao et al.,
2022), trained on a dataset encompassing 46 languages with the English data
constituting only 30% of the training dataset. With 175 billion parameters,
BLOOM exhibits robust multilingual translation capabilities in both high-
resource and low-resource languages, including zero-shot translation. More
recently, the Aya model (Üstün et al., 2024) with 13 billion parameters was
trained as a massively multilingual generative language model covering 101
languages, over 50% of which are classified as low-resource.

The performance of thesemodels cannot be directly compared to unsuper-
vised MT models due to the key differences in the training data. In general,
LLMs are trained on all texts available on the Internet, including parallel cor-
pora. In contrast, unsupervised MT is more of a lab-scenario where we arti-
ficially limit the training data to exclude parallel datasets and thereby control
the training conditions. Furthermore, modern LLMs are trained on hundreds
of billions of words, whereas most unsupervised MT models are exposed to
“only” hundreds of millions of words or fewer.

However, wemention large-scale generative LLMs alongside unsupervised
MT approaches for their ability to align theirmultilingual internal representa-
tions during unsupervised training. The contrast between unsupervised MT
and LLMs can be summarized in the following way: LLMs are decoder-only
models that are trained without an explicit translation objective using all text
data available, includingparallel data; unsupervisedNMTsystemsareencoder-
decodermodels that are trainedwith a clear translation objective but the train-
ing data excludesparallel corpora. Remarkably, translation capabilities emerge
in both approaches.

Briakou et al. (2023a) trace themultilingual alignment of LLMs to the prop-
erties of the pretraining data as they show that it contains translation exam-
ples. For example, PaLM (Chowdhery et al., 2022) was exposed to more than
30 million translation pairs across at least 44 languages. In this book, we ex-
plore how multilingual alignment occurs in unsupervised MT systems where
we have more control over the training data and the amount of cross-lingual
signals hidden there. Furthermore, we investigate how to improve the align-
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ment using pseudo-parallel data. We believe that our conclusions extend to
the area of LLMs as well.

4.1.2 MODEL INITIALIZATION

AllMTmodels benefit from initializing themodel parameterswithmeaningful
values rather than starting with random parameter values.

PRE-TRAINED CROSS-LINGUAL EMBEDDINGS

Lample et al. (2018a); Artetxe et al. (2018d) initialize their neural system with
pre-trainedembeddings trainedonmonolingual corporaandaligned inanun-
supervised way. Lample et al. (2018b) pre-train the embeddings on a concate-
nation of themonolingual corpora without an explicit bilingual alignment and
report the benefits of this pre-training strategy, especially for languages that
share a significant number of BPE units.

Unsupervised PBMTmodels can be initialized with a phrase table induced
frompre-trainedcross-lingual embeddings (Artetxeet al., 2018c; Lampleet al.,
2018b) or with a phrase table extracted from a pseudo-parallel corpus (Ren
et al., 2020).

Cross-lingual word embeddings can be obtained by post-hoc alignment of
monolingualword embeddings using a linearmapping relying on the assump-
tion of isomorphic embedding spaces, as discussed in Chapter 3. Aside from a
range of supervised methods to learn the mapping matrix, some approaches
are completely unsupervised andwill be discussed inmoredetail in Chapter 6.
Zhang et al. (2017) and Conneau et al. (2018b) align monolingual embedding
spaces through adversarial training. Artetxe et al. (2017) propose an alterna-
tive method to learn the linear mapping using the assumption that digits are
preserved across languages. Artetxe et al. (2018a) exploit the structural simi-
larity of embedding spaces and iteratively improve the mapping through self-
learning.

Chen and Cardie (2018); Heyman et al. (2019); Wada et al. (2019); Jawan-
puria et al. (2020) extend the bilingual embedding approaches to themultilin-
gual setup, leveraging the interdependencies between language pairs. Chen
andCardie (2018) employ a series of languagediscriminators to learn themap-
ping of N languages into a single space in the framework of adversarial train-
ing and further enhance the alignment using an iterative refinement approach
of Artetxe et al. (2018a). Jawanpuria et al. (2020) first induce bilingual lexi-
cons fromunsupervisedword embedding spaces anduse themas supervision
for learning amapping into themultilingual word embedding space. Heyman
et al. (2019) propose a strategy that makes the training more stable even for
distant languages as they train a multilingual model and add new languages
incrementally one by one. They argue that existing multilingual approaches
use one hub language without exploiting interdependencies between all lan-
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guages which leads to suboptimal results especially when working with a lan-
guage that is distant from the hub language.

Søgaard et al. (2018); Ormazabal et al. (2019); Patra et al. (2019); Vulić et al.
(2020) question the use of the mapping approaches in situations when lan-
guages and/or domains are dissimilar and their embedding spaces are not iso-
morphic. Vulić et al. (2019) question the necessity of completely unsupervised
approaches.

Wada et al. (2019) loosen the assumption of approximately isomorphic em-
bedding spaces and obtainmultilingual word embeddings fromamultilingual
bidirectional LSTM language model trained separately for each language but
with parameter sharing. Mohiuddin et al. (2020) propose a semi-supervised
method for non-linearmapping of two independently trained autoencoders in
the latent space which also allows them to depart from the assumption of lan-
guage isomorphism. Nishikawa et al. (2021) argue that learning monolingual
embeddings fromback-translated corpora generatedby aUMTsystemcreates
embedding spaces which are approximately isomorphic and report improve-
ment in the task of bilingual lexicon induction as well as other downstream
tasks. Cao et al. (2023) integrate features from the source embeddings into the
target embeddings to increase the geometric similarity of the two embedding
spaces.

PRE-TRAINED ENCODERS

Conneau and Lample (2019) take the pre-training of model parameters one
step further and pre-train a full encoder with the MLM or CLM objective and
copy the weights into the encoder as well as the decoder of the NMT model.
They conclude that the MLM strategy brings greater improvement in trans-
lation quality. Ren et al. (2019a) propose an MLM pre-training method with
an explicit cross-lingual signal. They construct code-switching sentences by
randomly choosing source n-grams in the input text stream and replacing
them with their translation counterparts from an unsupervised phrase table.
They train an encoder to predict the translated segments. Chronopoulou et al.
(2021) use cross-lingual subword embeddings to enhance the bilingual MLM
pre-training with lexical-level information and report a significant improve-
ment over the baseline trained without the enhancement. Using an entirely
different approach, Li et al. (2021) rely on Chomsky’s universal grammars to
find syntactic similarities between two languages and obtain a weak source of
additional signals to the unsupervised training. They pre-train the encoder on
the MLM task enhanced with constituent syntax information.

PRE-TRAINED ENCODER-DECODERMODELS

Song et al. (2019) argue that pre-training only the encoder is not optimal for
sequence-to-sequencemodels andproposea full encoder-decoder framework
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pre-trained to reconstruct a sentence from its corrupted version where a sen-
tence fragment is masked. The MASSmodel is presented with themasked se-
quence and it is taught to generate the full original sentence. Similarly, Liu
et al. (2020) pre-train the entire model on the task of denoising autoencod-
ing where the model is taught to reconstruct the original text stream from its
noised input, where the noising function includes masking of sentence frag-
ments and sentence permutation. Li et al. (2020a) pre-train the model on the
task of explicit sentence compression (ESC) where extra tokens are sampled
from the corpus to create additive noise that makes the sentence longer. The
tokens of the extended input sentences are shuffled and the model is trained
to recover the original, compressed version of the noised sentence. Li et al.
(2020b) conclude that the ESC pre-training is on par with MLM pre-training
and superior to CLM pre-training.

Baziotis et al. (2021) find that unlike supervised MT systems, UMT systems
are very sensitive to noising strategies used during pre-training. Masking
strategies lead to a significantly higher performance than shuffling strategies.

MULTILINGUAL PRE-TRAINING

Liu et al. (2020) pre-train a largemultilingualmodel on texts in 25 (mBART) or
50 (mBART-50) languages which can be fine-tuned for a specific language pair
with state-of-the-art results.

TRANSFER LEARNING FROM PARALLEL DATA

Successful transfer of MT abilities from high-resource language pairs to low-
resource languagewas demonstrated by Kocmi et al. (2021); Zoph et al. (2016);
Kim et al. (2019), suggesting that translation has some universal nature that
goes beyond generating text in a particular language. Li et al. (2020b) andGar-
cia et al. (2020) adapt the approach to the unsupervised setting and use trans-
fer learning topre-train anNMTsystemonanauxiliary languagepair andfine-
tune it in an unsupervised way using back-translation.

4.1.3 TRAINING STRATEGIES

Most unsupervised training strategies rely on a combination of different train-
ing objectives and most require some form of back-translation for training.
One exception is found in the work of Üstün et al. (2021), who, however, rely on
auxiliary parallel data. In the following paragraphs, we list the training strate-
gies used by different authors.

ITERATIVE TRAINING

The iterative training strategy is employed in approaches where the train-
ing data is generated by the model being trained, either by online back-
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translation, or online sentence selection. The quality of the training thus in-
creases as the training progresses.

Lample et al. (2018a) and Artetxe et al. (2018d) propose online back-
translation, where a mini-batch of sentences is translated by the emergent
NMT model and it is immediately used for training the model in the opposite
translation direction, all in one training step.

Other authors select training samples by online parallel sentence mining.
Ruiter et al. (2019) use the encoder of the NMT model for incrementally find-
ing cross-lingually similar sentences in themonolingual training corpora and
train the NMTmodel on the retrieved sentences as soon as one training batch
is complete. Tran et al. (2020) iteratively train the multilingual mBARTmodel
on translation and sentence selection to enhance representation alignment in
the course of MT training.

ADVERSARIAL TRAINING

Lample et al. (2018a) use the adversarial loss during unsupervised NMT train-
ing to induce shared encoder representations but they drop it in Lample et al.
(2018b) and train only using iterative back-translation and denoising autoen-
coding. Yang et al. (2018) also enforce the shared encoder latent space by ad-
versarial training.

Rather than relyingonback-translated synthetic sentences,Wuet al. (2019)
extract translation candidates from the targetmonolingual corpus andemploy
a simple editing mechanism to bring the extracted target sentence represen-
tation closer to the source sentence. They do not use the extracted translation
candidates as ground truth for MT training directly but rather view them as
anchor points that the translated sentence should be close to. They train the
translation model together with an evaluation network that assesses the sim-
ilarity of the extracted sentence pairs to the source sentence using an adver-
sarial approach. The goal of the translation model is to generate a translation
with a higher similarity score than the extracted-and-edited candidates and
themodel plays aminimax gamewith the evaluator network to reach that goal.

Conneau et al. (2018a) use adversarial training for mapping monolingual
embeddings into the cross-lingual space. Hartmann et al. (2019) survey exist-
ing unsupervised cross-lingual word embedding techniques and suggest that
despite their inherent instability, generative adversarial networks possess the
greatest potential for generating valuable seed dictionaries.

REFERENCE AGREEMENT TRANSLATION

Garcia et al. (2020) propose a novel cross-translation loss term that enforces
cross-language pair consistency utilizing not only monolingual data but also
an auxiliary parallel corpus for a related language pair. They show that adding
one more language to the training framework can lead to improvements in
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BLEU scores over state-of-the-art unsupervised models. Wang et al. (2021)
propose indirect supervised training using auxiliary parallel data as well as
synthetic data forward-translated and back-translated via a third language.
Li et al. (2020c) propose a reference language-based framework where they
leverage a parallel corpus that the source language has with a third language.
They train twomodels (source to target and reference to target) to translate the
parallel source and reference sentences into the target language and combine
them to generate an agreed-upon translation which is used as the ground truth
for the next iterations of translation training. The same translation pairs can
alsobeused to train oppositemodels in aback-translation framework. Theau-
thors report a significant improvement over the systems which do not use the
reference language pair as well as over a system pre-trained on the reference
language pair and fine-tuned on back-translation.

REINFORCEMENT LEARNING

Wang et al. (2021) train a UNMT model under the reinforcement learning
framework with a reward function that praises themodel for producing trans-
lations for a high number of n-grammatches and semantic adequacy.

META-LEARNING

Park et al. (2021) explore domain adaptation within UMT by using meta-
learning. The objective of meta-learning in MT is to find the optimal parame-
ter initialization that would allow the model to quickly adapt to a new domain
even with only a small amount of in-domainmonolingual data. They enhance
the vanillameta-learningmodel byusing a cross-domain loss to encourage the
model tobeable togeneralizewell to anotherdomain. They report a significant
margin of the meta-learning algorithms over domain adaptation via transfer
learning.

4.1.4 DECODING STRATEGIES

The specifics of low-resource MT can also be tackled at test time. If auxiliary
parallel texts are available and there exists a pivot language that has parallel
data both with the source and the target, source-to-target translation can be
performed in two steps using two standard supervisedMTmodels: source-to-
pivot and pivot-to-target. It is important to note that using pivot translation
introduces an additional step in the translation pipeline, which may lead to
compounding errors and potentially reduce translation accuracy. The choice
of a suitable pivot language is also crucial as it can greatly impact the overall
translationquality. Leng et al. (2019) hypothesize that translating betweendis-
tant languages is easier to learn via a pivot than directly. They train multiple
unsupervised NMT systems and conclude that a majority of the distant lan-
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guage pairs indeed require a pivot or even multiple pivots to achieve a higher
translationquality. They further propose a strategy forfinding the optimal piv-
oting route from the source to the target language.

Pourdamghani et al. (2019) introduce another two-step translation ap-
proach where the mid-step is a synthetic language called Translationese –
rough word-by-word translation of source texts obtained using unsupervised
source-to-target dictionaries. An MT system is trained on auxiliary parallel
data to translate from Translationese into a fluent target language and it can
be applied to any source language at test time, provided that an unsupervised
dictionary is available.

4.2 DATA-CENTRIC APPROACHES TO UMT

Unsupervised training of anMT system is always at least partially data-centric
– the training data is synthesized from the monolingual texts which are avail-
able or they are mined from the monolingual corpora. Alternatively, multilin-
gual or auxiliary parallel data in other languages are used. In this section, we
list the works which introduce a novel method for obtaining the training data.

4.2.1 PSEUDO-PARALLEL DATA

Ren et al. (2020) build a pseudo-parallel corpus by retrieving semantically
comparable sentences frommonolingual corpora and rewriting the target side
to get rid of unalignedwords andminimize the semantic gap. The state-of-the-
art approaches to parallel corpusmining are based on a similarity retrieval of
sentence embedding vectors using amargin-based scoring of translation can-
didates (Artetxe and Schwenk, 2019a).

Most models rely on heavy supervision by parallel corpora for the embed-
ding. Kvapilíková et al. (2020b); Keung et al. (2020) show that it is possible to
mine sentence pairs without having any parallel texts to start with by using
unsupervised multilingual sentence embeddings from a pre-trained Trans-
former language model. Hangya and Fraser (2019) use word similarity scores
for parallel sentence mining, while controlling the length of aligned continu-
ous parallel segments detected in sentence pair candidates to adjust for the
fact that sentences with similar words may carry different meanings. Ruiter
et al. (2019) mine parallel sentences on-the-fly during translation training us-
ing the internal encoder states of the unsupervisedmodel as sentence embed-
dings. Hangya and Fraser (2019); Ruiter et al. (2021); Kvapilíková and Bojar
(2022) integratemined sentences intoUMT training and report improvements
over unsupervised baselines.

Earlier work in the area of monolingual sentence representation (Arora
et al., 2017; Wieting et al., 2016) shows that averaging static word embeddings
is a simplebut strongbaseline for creating sentence-vectors. Kiros et al. (2015)
adapt the Skip-gram (Mikolov et al., 2013a) word embedding model for sen-
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tences (SkipThought) and train an LSTM model to reconstruct surrounding
sentences of an encoded passage. Cer et al. (2018) train a universal Trans-
former encoder on a variety of downstream tasks including SkipThought and
text classification. Conneau et al. (2017) obtain sentence embeddings from the
supervised task of natural language inference (NLI) and argue its superior-
ity over unsupervised methods. Pagliardini et al. (2018) propose a Sent2Vec
model composing embedding vectors of individual words and n-grams con-
tained in the sentence.

Schwenk and Douze (2017); Schwenk (2018); España Bonet et al. (2017) de-
rive sentence embeddings from internal representations of a neural machine
translation system with a shared encoder. The top performance in parallel
data mining is currently achieved by LASER (Artetxe and Schwenk, 2019b), a
multilingual BiLSTMmodel sharing a single encoder for 93 languages trained
on parallel corpora to produce language-agnostic sentence representations.
LASER has been successfully used to mine billions of sentence pairs from the
web (Schwenk et al., 2021). Reimers and Gurevych (2020) show how to change
monolingual sentence embeddings into multilingual using knowledge distil-
lation. Heffernan et al. (2022) use the proposed approach to extend LASER to
unseen languages.

The universal sentence encoder (USE) (Cer et al., 2018; Yang et al., 2020)
family covers sentence embedding models with a multi-task dual-encoder
training framework including the tasks of question-answerpredictionornatu-
ral language inference. Guo et al. (2018) directly optimize the cosine similarity
between the source and target sentences using a bidirectional dual-encoder.
Yang et al. (2019) enhance themodelwith an additivemargin softmax loss to sep-
arate translations from nearby non-translations.

An entirely different (and possibly unsupervised) approach is to construct
sentence representations by aggregating cross-lingual word embeddings ei-
ther by simple averaging (Arora et al., 2017) or using an IDF-weighted average
(Litschko et al., 2019). However, since the mapping is applied to static (non-
contextualized) embeddings, this strategy gives up on the contextual informa-
tion which could be exploited in the sentence representation construction.

4.2.2 SYNTHETIC DATA

SYNTHETIC DATA FROM PBMT

Training anNMTmodel entirely ondata fromaPBMTsystem is not a good idea
because the quality of the PBMT translations greatly influences the final trans-
lation quality. However, the initial cross-lingual signal into the unsupervised
NMT model may come from an unsupervised phrased-based model. Unlike
the previous initialization approaches based on weights initialization, the sig-
nal is passed to themodel in the formof the initial synthetic parallel corpus in-
tended for the first stage of the training. Kvapilíková et al. (2019), Stojanovski
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Figure 4.2: Illustration of the dual MT. The bidirectionalmodel (left) is trained jointly in both
translation directions using an online back-translation training objective. The two unidirec-
tional models (right) are trained separately for each language pair using the standard super-

vised MT objective on the back-translated parallel corpus.

et al. (2019) use a phrase-basedmodel to translatemonolingual sentences and
train a neural model on the synthetic samples. Artetxe et al. (2019b) first train
their neuralmodels exclusively on the synthetic parallel corpora generated by
a phrase-based system and as the training progresses, they adaptively mix in
the translationsproducedby the emergentneuralmodels. Renet al. (2020) im-
prove the initial phrase-based systems by training themon enhanced pseudo-
parallel data andargue that lessnoisy initial translationspresented to theNMT
model lead to an increase in final translation quality.

SYNTHETIC DATA FROMNMT

Unsupervised systems exploit the dual nature of machine translation where a
model trained in one language direction can create training data for a model
trained in the reverse direction. Lample et al. (2018a); Conneau and Lample
(2019) train a single model for both language directions following the multi-
lingual MT design of Johnson et al. (2017) which allows them to employ back-
translation in an online manner where synthetic training data is generated
by the very same model that is being trained, one mini-batch at a time. On
the other hand, Artetxe et al. (2019b) train two distinct models, one for each
translation direction, and they use them to back-translate a large set of 1M
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sentences. They perform one pass over the synthetic corpus before the next
round of back-translation. The two approaches are illustrated in Figure 4.2.

Ren et al. (2019b) use a phrase-based model to filter the noise present in
back-translateddata fromtheNMTmodel by joint incremental trainingofboth
thephrase-basedand theNMTmodels inanexpectation-maximization frame-
work. Khatri andBhattacharyya (2020) filter back-translated sentences to give
moreweight to samples of higher quality,measuredby a sentence-wise round-
trip BLEU score. They report an improvement in translation quality with fil-
tering the synthetic data in the range of 0.5-0.7 BLEU points compared to the
baseline trained without filtering. Lu and Zhang (2021) use curriculum learn-
ing to reflect a different quality of back-translated data. Similarly, Chauhan
et al. (2022)weighback-translated sentencesusing a round-trip semantic sim-
ilarity score.

Sun et al. (2021) use synthetic sentences both on the source side and on
the target side and confirm that even noisy self-training can improve the MT
quality. He et al. (2022) note that thenature of synthetic data creates a style gap
between training and inference. The model is trained to translate synthetic
sentences biased towards the target domain while it is tested on translating
authentic sentences. They try to bridge the gap by mimicking the inference
scenario already during training.

4.2.3 MULTILINGUAL DATA

Garcia et al. (2020) explore themultilingual view onUMT and provide a proba-
bilistic framework that encompassesboth supervisedandunsupervised train-
ing under the framework of expectation-maximization. Sen et al. (2019); Sun
et al. (2020) train a multilingual unsupervised NMTmodel using multilingual
denoising and back-translation. Sen et al. (2019) use language-specific de-
coders, while Sun et al. (2020) report better results when using a shared de-
coder as well as the encoder. Sun et al. (2020) further improve their results
with knowledge distillation.

Garcia et al. (2021) claim that multilinguality is critical for the practical
usability of UMT in low-resource conditions. They train a multilingual sys-
tem with a shared encoder and decoder. They use auxiliary parallel data in
three training stages. They pre-train the entire model by masked denoising
of monolingual sentences (MASS; Song et al., 2019), and train for translation
with auxiliary parallel data as well as back-translated data. They fine-tune
the model using a back-translation term as well as a cross-translation (Gar-
cia et al., 2020) term. They corroborate the robustness of their system in truly
low-resource settings.

Wang et al. (2021) confirm the benefits of cross-lingual supervision from
a high-resource language pair. Costa-jussà et al. (2022) train a multilingual
mixture-of-expertsmodel (NLLB-200)whichdynamically activates only a subset
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of themodel’s parameters (experts) for each input, which allows the system to
scale efficiently. NLLB-200 reaches a state-of-the-art translation performance
for low-resource languages.



5.

PARALLEL CORPUSMINING
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Unsupervised machine translation comprises techniques to learn language
structure frommonolingual data and translatewithout seeing authentic trans-
lation pairs. However, the translation quality is often inadequate for practical
purposes andwe hypothesize that unsupervisedmodels are not able to exploit
all the cross-lingual information hidden in monolingual texts. Therefore, we
help them by harvesting some cross-lingual signals ourselves.

Real data collection from human translators leads to the creation of data
sets of the highest quality, but it is also the slowest and the most expensive
option. Arguably, if we want to improve the translation quality of a particular
low-resource language or domain, collecting new data from native speakers
or domain experts is the best thing that we can do. However, when collect-
ing new natural pieces of text is not an option, we can resort to finding parallel
sentences in existing comparable corpora. In this chapter, we explore the pos-
sibilities of parallel sentence search andwe present a strategy tomine parallel
sentences from monolingual corpora. We consider the mined sentence pairs
to be pseudo-parallel as they should ideally be identical inmeaning but in prac-
tice only share a certain degree of similarity.

Our approach to parallel corpus mining is the following:
1. embed sentences in a multilingual space;
2. score all possible candidate sentence pairs;
3. set a threshold score for two sentences to be considered parallel;
4. select sentence pairs which score above the threshold.
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5.1 RELATEDWORK

The state-of-the-art approaches to parallel corpus mining are based on sim-
ilarity retrieval of sentence embedding vectors using a margin based scoring
of translation candidates (Artetxe and Schwenk, 2019a). Most models rely on
heavy supervision by parallel corpora for the embeddings.

Schwenk and Douze (2017); Schwenk (2018); España Bonet et al. (2017) de-
rive sentence embeddings from internal representations of a neural machine
translation systemwith a sharedencoder. The topperformance inparallel cor-
pus mining is currently achieved by LASER (Artetxe and Schwenk, 2019b), a
multilingual BiLSTMmodel sharing a single encoder for 93 languages trained
on parallel corpora to produce language agnostic sentence representations.
LASER has been successfully used to mine billions of sentence pairs from the
web (Schwenk et al., 2021).

The universal sentence encoder (USE, Cer et al., 2018; Chidambaram et al.,
2019; Yang et al., 2020) family covers sentence embedding models with a
multi-task dual-encoder training framework including the tasks of question-
answer prediction or natural language inference. Guo et al. (2018) directly op-
timize the cosine similarity between the source and target sentences using a
bidirectional dual-encoder. Yang et al. (2020) enhance themodel with an addi-
tive margin softmax loss to separate translations from nearby non-translations.

Sincewe focusonextracting translationknowledgeexclusively frommono-
lingual data, we base our approach in unsupervised multilingual language
models suchasM-BERT (Devlin et al., 2019), XLM (ConneauandLample, 2019),
or XLM-R (Conneau et al., 2020). Theywere pre-trainedwith anMLMobjective
to learn a joint structure of the presented languageswithout relying onparallel
data resources. While several authors (Pires et al., 2019;Wu andDredze, 2019;
K et al., 2020) bring evidence of cross-lingual transfer within such models,
their internal representations are not entirely language agnostic (Libovický
et al., 2019). To extend multi-lingual language modelling to low-resource lan-
guages, ImaniGooghari et al. (2023) fine-tune XLM-R for 500 languages with
limited resources (Glot500).

An entirely different (and possibly unsupervised) approach is to construct
sentence representations by aggregating cross-lingual word embedings ei-
ther by simple averaging (Arora et al., 2017) or using an IDF weighted average
(Litschko et al., 2019). However, since the mapping is applied to static (non-
contextualized) embeddings, this strategy gives up on the contextual infor-
mation which could be exploited in the sentence representation construction.
We use averaged cross-lingual word embeddings obtained in an unsupervised
way (Artetxe et al., 2018a) as a baseline for our method.
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5.2 METHODOLOGY

We propose a method to further align representations from such models into
the cross-lingual space and use them to derive sentence embeddings. Our ap-
proach is completely unsupervised and is applicable also for distant language
pairs. The proposedmethod outperforms previous unsupervised approaches
on the BUCC 201815 shared task, and is even competitive with several super-
vised baselines. The research work described in this chapter was published
(Kvapilíková et al., 2020a) and the rest of this chapter includes portions of text
and tables verbatim from our research paper.

In the following paragraphs, we describe the multilingual MLM models
(Section 5.2.1), the fine-tuning objective for enhanced alignment of their inter-
nal representations (Section5.2.2), and theextractionof sentenceembeddings
(Section 5.2.4). The experiments in this section were published in Kvapilíková
et al. (2020a).

5.2.1 PRE-TRAINEDMULTILINGUALMASKED LANGUAGEMODELS

In Section3.2.4, we introduced themasked languagemodelling (MLM) training
objectiveused for trainingTransformer encoder-based languagemodels. Now
we show their usability for our purposes.

When training a multilingual MLM, text streams are fed into the model to-
getherwith a language identification in the formof a language embedding vec-
tor which is added to every token embedding. In each training step, themodel
is presented with one batch of masked text streams for every language. The
text streams have usually a fixed size of N tokens and contain several sen-
tences. In our experiments, N = 256. The vocabulary of subword units is
shared among all languages.

5.2.2 FINE-TUNINGMLMSWITH A TRANSLATION OBJECTIVE

When parallel data is available, it can be leveraged in the training of the mul-
tilingual language model using a translation language model objective (TLM)
(Conneau and Lample, 2019) which is a supervised version of theMLM trained
on parallel data. Pairs of sentences are concatenated, random tokens are
masked from both sentences and the model is trained to fill in the blanks by
attending to any of the words of the two sentences. The training design is il-
lustrated in Figure 5.1. The Transformer self-attention layers thus have the
capacity to enrich word representations with information about their mono-
lingual context as well as their translation counterparts. This explicit cross-
lingual training objective further enhances the alignment of the embeddings
in the cross-lingual space.

15 11th Workshop on Building and Using Comparable Corpora
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Figure 5.1: Transformer model trained with a translation language modelling (TLM) objec-
tive (Conneau and Lample, 2019).

We use this objective to fine-tune the pre-trained model on a small syn-
thetic parallel data set obtained via unsupervised MT for one language pair,
aiming to improve theoverall cross-lingual alignmentof the internal represen-
tations of themodel. In our experiments, we also compare the performance to
fine-tuning on a small authentic parallel corpus.

Our UMTmodel follows the approach of Conneau and Lample (2019). It is a
Transformer model with the encoder-decoder architecture. Both the encoder
and the decoder are shared across languages and they are initialized with a
pre-trained bilingual MLM to bootstrap the training. Both the encoder and the
decoder have 6 layers, 8 attention heads, and a hidden unit size of 768. The
system is trained using the unsupervised neural MT training pipeline of de-
noising and back-translation (Lample et al., 2018a) which will be described in
detail in Chapter 6.

5.2.3 FINE-TUNINGMLMS FOR UNSUPPORTED LANGUAGES

We work with large-scale pre-trained models which cover a fixed number of
languages that appeared in the training data. If we wish to use the model for a
language thatwasnot seenduringpre-training, wehave tofine-tune themodel
ex-post. If the script of our target language is included in the vocabulary of the
pre-trainedmodel, we can proceed directly with fine-tuning for theMLM task.
However, it is important to note that the subword segmentation may not be
ideal and could potentially result in character-level splitting for less common
scripts. If the characters are unknown to the model or the performance is un-
satisfactory, the vocabulary can be extended (Wang et al., 2019).
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Figure 5.2: Encoding amasked sentence by a Transformermodel. Contextualized word em-
beddings are aggregated bymean-pooling.

5.2.4 SENTENCE EMBEDDINGS

It was explained in Chapter 3 that Transformer languagemodels produce con-
textual representations capturing the semantic and syntactic properties of
word (subword) tokens in their variable context. Contextualized embeddings
can be derived from any of the internal layer outputs of themodel. We experi-
mentwith representations fromdifferent layers and evaluate themon the task
of parallel sentence matching to select the one that best suits our objective.

Parallel sentence search requires the use of sentence embeddings rather
than subword token embeddings. Aggregating token embeddings to fixed-
length sentence representations necessarily leads to an information loss.
We compose sentence embeddings from subword representations by simple
element-wise averaging. Even though mean-pooling is a naive approach to
subword aggregation, it is often used for its simplicity (Reimers andGurevych,
2019; Ruiter et al., 2019; Ma et al., 2019) and in our scenario it yields better re-
sults thanmax-pooling.

5.2.5 SEARCHING INMULTILINGUAL EMBEDDING SPACE

In our approach to parallel sentencemining, the first step is to embed all sen-
tences in a shared multilingual space where they can be scored and matched
to find pairs which are equivalent or at least similar in meaning.

In order to score all possible candidate sentence pairs, we use the margin-
basedapproachofArtetxeandSchwenk (2019a)whichwasproved toeliminate
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the hubness problem of embedding spaces and yield superior results (Artetxe
and Schwenk, 2019b). The score relies on cosine similarity tomeasure the dis-
tance between sentences but it is defined in relative terms to the average co-
sine similarity between the two sentences and their nearest neighbours.

xsim(x, y) = margin(cos(x, y),
∑

z∈NNk(x)

cos(x, z)
2k

+
∑

z∈NNk(y)

cos(y, z)
2k

) (5.1)

where margin(a, b) = a
b , NNk(x) is the set of k nearest neighbours of x. The

method for scoring involves cosine similarity which is comparatively evalu-
ated against the average cosine similarity of a given sentence with its nearest
neighbours to eliminate the “hubs”. When the score surpasses a designated
threshold T , two sentences are deemed to be parallel:

xsim(x, y) > T (5.2)

The optimal threshold for filtering the translation pairs is learned by tuning on
the train set F1 scores.

5.3 EXPERIMENTS

We empirically evaluate the quality of our cross-lingual sentence embeddings
and compare it with state-of-the-art supervised methods and unsupervised
baselines. We evaluate the proposed method on the task of parallel corpus
mining andparallel sentencematching. Wefine-tune twodifferentmodels us-
ing English-German (EN-DE) and Czech-German (CS-DE) synthetic parallel data.
For comparison, we fine-tune two alternative models using authentic parallel
data in the following two low-resource language pairs: English-Nepali (EN-NE)
and English-Kazakh (EN-KK).

5.3.1 MODEL

In this work, we use the publicly available pre-trainedmodel XLM-10016 (Con-
neau and Lample, 2019) with 16 transformer layers, 16 attention heads, and
the hidden unit size of 1280. The model was trained on monolingual corpora
in 100 languagesmainly fromWikipedia with the BPE vocabulary of 200k sub-
words. We also experimented with the bert-base-multilingual-cased model with
similar or slightly worse results. While XLM-R (Conneau et al., 2020) was re-
ported to deliver better results on several tasks, we do not observe a signifi-
cant difference for parallel sentence mining and we use the more lightweight
XLM-100 which has a higher dimension of internal representations than the
large configuration of XLM-R but a lower overall number of parameters. For

16 Available at https://github.com/facebookresearch/XLM.
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the sake of brevity, we will refer to the XLM-100 model as XLM throughout the
remainder of this chapter.

5.3.2 DATA

The XLM model was pre-trained on the Wikipedia corpus of 100 languages
(Conneau and Lample, 2019). The monolingual data for fine-tuning was sam-
pled from NewsCrawl 2018 (10k CS sentences, 10k DE sentences, 10k EN sen-
tences).

Monolingual training data for the English-German UMT models was ob-
tained fromNewsCrawl 2007–2008 (5M sentences per language). The text was
cleanedand tokenizedusing standardMoses (Koehnet al., 2007) tools and seg-
mented into BPE units based on 60k BPE splits.

5.3.3 TRAINING

To generate synthetic data for fine-tuning the sentence encoder, we train two
UMT models (EN-DE, CS-DE) using the same method and parameters as in Con-
neau and Lample (2019) on 8GPUs for 24 hours. We use thesemodels to trans-
late 10k sentences in each language. The translations are coupled with the
originals into two parallel corpora of 20k synthetic sentence pairs.

The small synthetic parallel corpora obtained in the first step are used to
fine-tune thepre-trainedXLMmodel using theTLMobjective. Wemeasure the
quality of induced cross-lingual embeddings from different layers on the task
of parallel sentence matching described in Section 5.4.2 to choose the layer
and to determine the optimal training time. We conclude that the best cross-
lingual performance is achieved at the 12th (5th-to-last) layer and we observe
the best results after fine-tuning for one epochwith a batch size of 8 sentences
and all other pre-training parameters intact. The development accuracy de-
creases with fine-tuning on a larger data set. The evaluation across layers is
summarized in Figure 5.3.

5.3.4 BENCHMARKS

We assess our method against two unsupervised baselines to separately mea-
sure the fine-tuning effect on the XLM model and to compare our results to
anotherpossibleunsupervisedapproachbasedonpost-hocalignment ofword
embeddings.

Vanilla XLM: Contextualized token representations are extracted from the
12th layer of the original XLM17 model andmean-pooled into sentence embed-
dings.

Word Mapping: We use Word2Vec embeddings with 300 dimensions pre-
trained on NewsCrawl and map them into the cross-lingual space using the
17 Using theM-BERTmodel yielded similar results to XLM.
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unsupervised version of VecMap (Artetxe et al., 2018a). As above, word em-
beddings are aggregated bymean-pooling to represent sentences.18

5.4 RESULTS

Weexplore themultilinguality of a large pre-trained languagemodel XLM19 by
assessing its representations on a task of corpus deshuffling. Since themodel
is trained in a completely unsupervised way, any evidence of cross-lingual
transfer is surprising. We dissect themodel to assess howmuch cross-lingual
information is hidden in its internal representations on different layers and
select which layer outputs the most multilingual representations. We use the
findings from this experiment when setting hyperparameters in further ex-
periments.

5.4.1 EVALUATION I: PARALLEL CORPUSMINING

Wemeasure the performance of our method on the BUCC shared task of par-
allel corpusmining where candidate systems are expected to search two com-
parable non-aligned corpora and identify pairs of parallel sentences. We eval-
uate on two data sets – the original BUCC 2018 corpus created by inserting
parallel sentences intomonolingual texts extracted fromWikipedia (Zweigen-
baumet al., 2017) and a newBUCC-like data set (News train and test) whichwe
created by shuffling 10k parallel sentence from News Commentary into 400k
monolingual sentences from News Crawl. The BUCC and News data sets are
comparable in size and contain parallel sentences from the same source, but
differ in overall domain.

Tables 5.1 and 5.2 show the results of our proposedmodel on the BUCC and
News test sets. When comparing ourmethod to related work, it must be noted
that theunderlyingXLMmodelwaspre-trainedonWikipediaand thereforehas
seen themonolingual BUCC sentences during training. This could result in an
advantage over other systems, as the model could exploit the fact that it has
seen thenon-parallel part of the comparable corpus during training. However,
since both the proposedmethod and the vanilla XLM baseline suffer from this,
their results remain comparable. We also report results on the News test set
which is free from such potential bias (Table 5.2).

The results reveal that TLM fine-tuning on the synthetic parallel sen-
tences brings a substantial improvement over the initial pre-trained model
trained only using the MLM objective (vanilla XLM). In terms of the F1 score,
the gain across four BUCC language pairs prevails and ranges between 14.0-
22.3 points. Even though the fine-tuning focused on a single language pair

18 Weightingwordembeddingsby their sentence frequency (IDF) didnot lead to a significant improvement
over a simple average.

19 Available at https://github.com/facebookresearch/XLM.
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EN-DE EN-FR EN-RU EN-ZH Supervision
Leong et al. (2018) - - - 56.00 bitext (0.5M sent.)
Bouamor and Sajjad (2018) - 76.00 - - bitext (2M sent.)
Schwenk (2018) 76.90 75.80 73.80 71.60 multi (2M sent.)
Azpeitia et al. (2018) 85.52 81.47 81.30 77.45 bitext (2-9M sent.)
Artetxe&Schwenk [2019] 96.19 93.91 93.30 92.27 multi (223M sent.)
Word Mapping 32.04 32.94 17.68 20.65 none
Vanilla XLM* 62.10 64.77 61.65 44.79 none
Ourmethod* (EN↔DE) 80.06 78.77 77.16 67.04 none (20k sent.**)

Table 5.1: F1 score on the parallel sentence mining task (BUCC test set). The supervised
(upper part) and unsupervised (lower part) winners are highlighted in bold. * Themodel was

pre-trained onWikipedia. ** Synthetic translations produced by unsupervised MT.

Source: Kvapilíková et al. (2020a)

EN-DE EN-FR EN-RU EN-ZH EN-KK CS-ZH DE-RU
Artetxe&Schwenk [2019] 90.30 87.38 94.34 83.92 12.07 73.41 88.39
Word Mapping 28.45 30.79 17.81 16.04 2.28 10.86 19.55
Vanilla XLM 72.58 71.92 72.90 59.26 24.00 43.00 58.29
Ourmethod (en↔de) 79.32 77.05 80.98 65.49 35.41 48.79 65.91

Table 5.2: F1 score on the parallel sentence mining task (News test set). The supervised
and unsupervisedwinners are highlighted in bold. Artetxe and Schwenk (2019b) valueswere

obtained using the public implementation of the LASER toolkit.

Source: Kvapilíková et al. (2020a)

(English-German), the improvement is notable for all evaluated language
pairs. The largest margin of 21.6 points is observed for the English-Chinese
mining task. We observe that using a small parallel data set of authentic trans-
lation pairs instead of synthetic ones does not have a significant effect.

The weak results of the wordmapping baseline can be partially attributed to
the superiority of contextualized embeddings for representation of sentences
over static ones. Furthermore, word mapping relies on the questionable as-
sumption of isomorphic embedding spaces which weakens its performance
especially for distant languages. In our proposed model, it is possible that
joint training of contextualized representations induces an embedding space
withmore convenient geometricpropertieswhichmakes itmore robust to lan-
guage diversity.

Although the performance of our model generally lags far behind the su-
pervisedLASERbenchmark, it is valuablebecauseof its fullyunsupervisedna-
ture and itworks even for distant languages such asChinese-Czech or English-
Kazakh.
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DE-EN CS-EN CS-DE CS-FR CS-RU FR-ES FR-RU ES-RU
Artetxe&Schwenk [2019] 98.78 99.08 99.23 99.37 98.77 99.42 98.60 98.77
Word Mapping 60.60 55.03 75.35 43.33 79.87 71.07 41.25 53.87
Vanilla XLM 87.15 79.83 82.87 80.55 85.15 91.07 85.28 85.73
Ourmethod (EN↔DE) 93.97 90.47 90.48 90.07 92.23 94.68 91.80 91.92
Ourmethod (CS↔DE) 94.43 90.15 90.50 89.48 92.33 94.65 91.72 91.25

Table5.3: Accuracyon thedeshuffling task (newstest2012) averagedoverbothmatchingdirec-
tions. Artetxe and Schwenk (2019b) values were obtained using the public implementation

of the LASER toolkit.

Source: Kvapilíková et al. (2020a)

5.4.2 EVALUATION II: CORPUS DESHUFFLING

To assess the effect of the proposed fine-tuning on other language pairs not
covered by BUCC, we evaluate our embeddings on the task of corpus deshuf-
fling. The taskentails searchingapool of shuffledparallel sentences to recover
correct translation pairs. Cosine similarity is used for the nearest neighbour
search.

We first evaluate the pairwisematching accuracy on the newstestmulti-way
parallel data set of 3k sentences in 6 languages.20 We use newstest2012 for de-
velopment and newstest2013 for testing. The results in Table 5.3 show that the
fine-tunedmodel is able tomatch correct translations in 90–95% of cases, de-
pending on the language pair, which is∼7%more than vanilla XLM. It is notable
that themodel whichwas only fine-tuned on English-German synthetic paral-
lel data has a positive effect on completely unrelated language pairs as well
(e.g. Russian-Spanish, Czech-French).

Since the greatest appeal of parallel corpus mining is to enhance the re-
sources for low-resource languages, we alsomeasure the deshuffling accuracy
on the Tatoeba (Artetxe and Schwenk, 2019b) data set of 0.5–1k sentences in
over 100 languages aligned with English. Aside from the two completely un-
supervisedmodels, we fine-tune twomoremodels on small authentic parallel
data in English-Nepali (5k sentence pairs from the Flores development sets)
and English-Kazakh (10k sentence pairs from News Commentary). Table 5.4
confirms that the improvement over vanilla XLM is present for every language
we evaluated, regardless of the language pair used for fine-tuning. We initially
hypothesized that the performance of the English-Germanmodel on English-
aligned language pairs would exceed the German-Czech model, but their re-
sults are equal on average. Fine-tuning on small authentic corpora in low-
resource languages exceeds both by a slight margin.

The results are clearly sensitive to the amount of monolingual sentences
in the Wikipedia corpus used for XLM pre-training and the matching accu-
racy of very low-resource languages is significantly lower thanweobserved for

20 Czech, English, French, German, Russian, Spanish
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AF AR AZ BE BG CA CS DE EL EO
Sup. baseline 89.5 92.0 66.0 66.2 95.0 95.9 96.5 99.0 95.0 97.2
Vanilla XLM 38.1 19.9 25.1 33.7 36.2 51.0 31.5 65.0 27.0 45.8
EN↔DE (synth) 57.3 41.1 46.3 58.4 56.0 66.9 53.5 83.1 51.3 68.0
CS↔DE (synth) 54.2 41.2 44.2 61.8 60.7 68.9 59.9 87.3 53.1 67.4
EN↔KK (auth) 58.4 45.6 51.4 60.2 59.2 72.6 53.9 87.0 54.6 72.1
EN↔NE (auth) 59.9 46.6 54.2 63.1 62.9 71.0 57.6 85.0 51.0 71.2

ET FI FY HI HR IA IS ID JA KA
Sup. baseline 96.7 96.3 51.7 94.7 97.2 95.2 95.6 94.5 91.8 35.9
Vanilla XLM 19.8 31.4 37.0 26.2 47.2 57.3 25.0 46.4 29.5 22.1
EN↔DE (synth) 39.0 47.5 48.6 53.4 68.2 71.4 43.1 64.9 54.4 41.4
CS↔DE (synth) 41.4 49.5 44.8 51.7 71.8 70.5 43.7 64.1 53.3 39.8
EN↔KK (auth) 43.4 51.3 51.7 60.3 71.3 79.5 45.0 66.4 59.6 44.0
EN↔NE (auth) 44.6 52.7 48.6 59.3 72.1 75.7 47.1 67.8 59.6 47.8

KK KU LT MK ML MN MR MS NE NN
Sup. baseline 18.6 17.2 96.2 94.7 96.9 8.2 91.5 96.4 20.6 88.3
Vanilla XLM 17.4 10.6 22.0 25.8 17.4 12.6 15.3 52.0 21.3 49.9
EN↔DE (synth) 33.6 16.8 43.9 48.8 51.6 29.0 37.3 67.0 32.8 66.8
CS↔DE (synth) 34.7 16.2 46.2 51.1 44.3 24.5 34.2 65.4 31.4 67.5
EN↔KK (auth) 46.1 20.0 46.2 54.7 54.0 32.7 41.9 69.8 37.3 69.2
EN↔NE (auth) 38.4 20.9 47.7 53.8 56.0 34.9 43.5 72.1 42.8 69.2

OC SL SR SV TA TE TL UK UR YI
Sup. baseline 61.2 95.9 95.3 96.6 69.4 79.7 50.5 94.5 81.9 5.7
Vanilla XLM 20.0 34.7 35.9 47.2 11.9 14.1 14.6 38.0 19.3 9.9
EN↔DE (synth) 34.3 54.9 58.6 69.7 40.9 44.7 24.0 66.1 43.7 22.1
CS↔DE (synth) 35.9 59.2 64.8 71.8 31.9 37.8 20.4 70.4 43.8 22.8
EN↔KK (auth) 40.3 58.0 64.3 73.3 42.8 44.0 24.4 71.6 48.2 25.8
EN↔NE (auth) 36.9 58.8 65.0 72.0 41.7 53.2 26.8 71.0 49.9 26.7

Table 5.4: Accuracy on the deshuffling task (Tatoeba) averaged over both matching direc-
tions (to and from English). The supervised baseline was obtained using the public imple-
mentation of the LASER model (Artetxe and Schwenk, 2019b). Our proposed models were
fine-tuned on synthetic parallel data (EN↔DE, CS↔DE) and authentic parallel data (EN↔KK,

EN↔NE).

Source: Kvapilíková et al. (2020a)



5 PARALLEL CORPUSMINING 77

Figure 5.3: Average deshuffling accuracy on newstest2012 before and after fine-tuning from
the input embedding layer (0th) to the deepest layer (16th).

Source: Kvapilíková et al. (2020a)

high-resource languages. However, the benefits of fine-tuning are substantial
(around 20 percentage points) and for some languages, the results even reach
the supervised baseline (e.g. Kazakh, Georgian, Nepali).

It seems that explicitly aligning one language pair during fine-tuning prop-
agates through the shared parameters and improves the overall representa-
tion alignment,making the contextualized embeddingsmore language agnos-
tic. The propagation effect could also positively influence the ability of cross-
lingual transfer within themodel in downstream tasks. A verification of this is
left to future work.

5.4.3 ANALYSIS: REPRESENTATIONS ACROSS LAYERS

Wederive sentence embeddings fromeach of the layers of themodel and show
deshuffling results on the development set averaged over all language pairs in
Figure 5.3, both before and after fine-tuning. The accuracy differs substan-
tially across the model depth, the best cross-lingual performance is consis-
tently achieved around the 12th (5th-to-last) layer of themodel. The TLMfine-
tuning affects especially the deepest layers.

5.4.4 PARALLEL CORPUSMINING FOR UNSUPPORTED LANGUAGES

The XLMmodel only supports the 100 languages covered during pre-training.
In order to use its representations for other languages, the model first has to
be fine-tuned.
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Figure 5.4: Training curves from fine-tuning the proposed model (en↔de) with the MLM
objective on English and Inuktitut texts with andwithout parameter freezing (left). Precision,
recall and F1 scores of the model fine-tuned without weight freezing on the task of parallel

corpus mining for English and Inuktitut (right).

ENGLISH-INUKTITUT

In the following experiments, we create sentence representations for text in
Inuktitut, a language that was not included in the pre-training of the XLM, and
use them for English-Inuktitut parallel corpus mining.

Wecreate anEnglish-Inuktitut (EN-IKU) encoderbyfine-tuningourproposed
model (EN↔DE) with the MLM objective on 1Mmonolingual sentences from the
Hansard21 corpus (IKU) and NewsCrawl (EN). Since the two languages are lin-
guistically distant and Inuktitut has a non-Latin script, this is a particularly
difficult scenario.

We experiment with fine-tuning the entire model versus weight-freezing
and fine-tuning only the lexical embeddings. Furthermore, we experiment
with random initialization of lexical embeddings prior to the fine-tuning. Oth-
erwise, the training details are identical to the TLM fine-tuning described in
Section 5.3.3. The training curves are shown in Figure 5.4. Although updating
the entire model experiences a sudden drop in performance at the beginning
of the training, it recovers and eventually converges to the highest MLM accu-
racy out of the three approaches. Therefore, in our future experiments, we do
not freeze weights and always update the entire model during fine-tuning.

21 Available at https://www.inuktitutcomputing.ca/NunavutHansard/info.php?lang=en.
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Decreasing MLM loss does not yet guarantee that the model is creating
bilingual representations usable for a parallel sentence search. We measure
the mining performance of the model by trying to recover 5k parallel sen-
tences22 mixed into 100k monolingual sentences. The precision, recall, and
F1 scores are evaluated as thefine-tuningprogresses andplotted inFigure 5.4.
We observe an initial performance boost as the model adapts to the new lan-
guage, followed by fluctuating outcomes, with precision ranging from 25% to
35%. The fact that the model was able to correctly recover up to 18% of the
hidden sentencesmeans that it was able to at least partially align its represen-
tations of Inuktitut to English.

INDIC LANGUAGES

For our later MT experiments with Assamese (AS), Khasi (KHA), Manipuri (MNI)
andMizo (MZ) which were also not a part of the originalmodel, we create a new
version of the XLMencoder by fine-tuning onmonolingual data using theMLM
objective without weight freezing. Although AS and MNI use a non-Latin script,
the vocabulary of the original model contains all characters from the Bengali-
Assamese alphabet so we do not have to extend it. We start from the XLM-100
model and fine-tune on the MLM task in the four Indic languages and English.
We use the batch size of 40 sentences per GPU and train on 2 GPUs. We use
Adam optimization with a leaning rate λ=0.00005.

In Table 5.5, we report the performance of the fine-tunedmodel on the task
of parallel corpusminingwhere themodel is evaluated onfindingparallel sen-
tences in two corpora of 202k sentences built bymixing the development set of
2k parallel sentences into a random set of 200k monolingual sentences from
the training corpus.23 Since the F1 scores are notably lower than we saw in
Section 5.4.1, we attempt to align the representations further. We employ the
technique from Section 5.2 where we fine-tune the entire model on a small
synthetic English-German corpus. We use the identical corpus now and ob-
serve that after the light fine-tuning, the internal representations of themodel
are more suitable for parallel corpusmining. The positive effect starts dimin-
ishing after the model had been exposed to 60k synthetic translations. The
results are reported in the last row of Table 5.5.

We compare our fine-tuned sentence encoder to twomore recent unsuper-
vised multilingual language models: XLM-R (supports AS) and Glot500 (sup-
ports AS and MZ). The models were pre-trained using the identical MLM pre-
training objective as theXLM-100model but theywere exposed to significantly
more data. We follow (Jalili Sabet et al., 2020) and take representations from
the 8th layer of the base-sized models. For the large-sized models, we fol-
low our earlier experiments and use the 12th layer. The performance of the

22 Parallel sentences are taken from the Hansard dev set.
23 The source of the data is described in Section 7.5
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EN-AS EN-KHA EN-MNI EN-MZ
Glot500 (8th layer) 15.05 - - 4.02
XLM-R base (8th layer) 2.23 - - -
XLM-R large (12th layer) 3.45 - - -
XLM-100 (12th layer) - - - -

�→ fine-tuned (Indic) 24.26 10.07 6.63 20.01
�→fine-tuned (EN↔DE synth) 47.16 25.88 12.76 36.02

Table 5.5: F1 scores on the task of parallel corpusmining where the systems try to recover a
set of 2k sentences shuffled intomonolingual corpora of 200k sentences from the train set. A
dash (-) signifies that one of the languages was not covered by the sentence encoder. Glot500

and XLM-R base have 12 layers; XLM-100 and XLM-R large have 16 layers.

benchmarks is very low, even for the Glot500 model which specializes in low-
resource languages. We note that the benchmarks have a lower dimensional-
ity in their internal representations (768 for XLM-R base and Glot500, 1024 for
XLM-R large, 1280 for XLM-100).

5.5 TAKEAWAYS

We proposed a completely unsupervised method for training of multilingual
sentence embeddings which can be used for building a parallel corpus with
no previous translation knowledge.

We showed that by fine-tuning a pre-trainedmultilingual encoder with the
TLM objective of gap-filling in bilingual sentence pairs, we can significantly
enhance the cross-lingual alignment of its representations using as little as
20k synthetic translation pairs. Since the synthetic translationswere obtained
from an unsupervised MT system, the entire procedure requires no authentic
parallel sentences for training.

Our sentence embeddings yield significantly better results on the tasks of
parallel corpusmining andparallel sentencematching than our unsupervised
baselines. Interestingly, targeting only one language pair during the fine-
tuning phase suffices to propagate the alignment improvement to unrelated
languages. It is therefore not necessary to build a working MT system for ev-
ery language pair we wish to mine.

The average F1margin across four language pairs on the BUCC task is ∼17
points over the original XLMmodel and∼7on theNewsdatasetwhere only one
of the evaluated language pairs was seen during fine-tuning. The gain in ac-
curacy in parallel sentencematching across 8 language pairs is 7.2% absolute,
lagging only 7.1% absolute behind supervised methods.

It is possible to adapt the proposed approach to new languages outside of
the originalmodel coverage byMLMfine-tuning. The performance can be fur-
ther improved by light fine-tuning of the adaptedmodel using synthetic paral-
lel sentences. The source of this improvement deserves further investigation.
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In Chapter 7, we will be using the proposed model to mine parallel sen-
tences and create pseudo-parallel corpora for the training of unsupervisedMT
systems.





6.
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This chapter outlines the methodology of training UMT systems that we em-
ploy in our experiments. We start by describing techniques for extracting a
cross-lingual signal frommonolingual data at the word level, which can serve
for initialization of both phrase-based and neural models. Specifically, we
detail unsupervised methods to create a cross-lingual embedding space and
build a bilingual lexicon. We then explain the functioning of unsupervised
phrase-based systems (UPBMT), and finally, we delve into the neural models
(UNMT).

Unsupervised models extract translation signals from monolingual texts
in several different ways. The core concept remains the same – the semantic
structures of text in different languages share similarities in howwords inter-
relate and unsupervisedmodels leverage this commonality. They utilize their
constrained internal structures to generate bilingual or evenmultilingual rep-
resentations. .

6.1 UNSUPERVISED CROSS-LINGUAL EMBEDDINGS

Wefirst discussed the topic of cross-lingual embeddings in Chapter 3 together
with the limitations posed by the restrictive assumption of isomorphism of
embedding spaces. We formally defined the problem of finding a linear map-
ping matrix W between the source and the target embedding space in Equa-
tion (3.1). We showed that the problem has a closed-form solution (Equa-
tion (3.2)) provided that a seed bilingual lexicon is available.

6.1.1 SEED LEXICON

Anumber of approaches has been proposed to create the seed lexiconwithout
the need of parallel texts.

1. If the source and the target languages bothuseArabic numerals, they can
serve as the initial seed lexicon (Artetxe et al., 2017).

2. If the source and the target languages share identical words (e.g. named
entities), they can serve as the initial seed lexicon (Artetxe et al., 2017).

3. The initial seed lexicon can be derived in a fully unsupervisedway by ex-
ploiting structural similarities between embedding spaces (Artetxe et al.,
2018a). For a source embedding matrix X and a target embedding ma-
trix Y where individual rows correspond to word embeddings xi and yi,
the similarity matrices MX = XXT and MY = Y Y T should match. In
practice, if embedding spaces are at least approximately isomorphic, the
initial seed lexicon canbederivedby anearest neighbour searchover the
rows of the similarity matrices.

4. The initial seed lexicon can be derived from a mapping learned by ad-
versarial training (Conneau et al., 2018a). An initial proxy for the map-
ping matrix W between source embeddings xi and target embeddings yi

is obtained in anadversarial training frameworkproposedbyGanin et al.
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(2017). A discriminator is trained to discriminate between elements ran-
domly sampled from {Wx1, ..., Wxn} and {y1, ..., ym} while W is trained to
prevent the discriminator frommaking accurate predictions.

The approaches (1)–(3) are implemented in the VecMap24 library and the
approach (4) is implemented in the MUSE25 library. In this work, we experi-
mentwith different approaches and rely on default hyperparameters from the
implementations.

6.1.2 SELF-REFINEMENT

Initial solutions outlined above can always be improved by a self-learning re-
finement (Artetxe et al., 2017) where the maping matrix W is iteratively up-
dated using the word pairs from the currently best lexicon as anchor points
for the Procrustes problem which has a closed-form solution (Equation (3.2)).
Anewupdated lexicon is built in each roundby thenearest neighbour retrieval
relying on the CSLS similarity metric (Conneau et al., 2018a)

CSLS(x, y) = cos(x, y) −
∑

z∈NNk(x)

cos(x, z)
2k

−
∑

z∈NNk(y)

cos(y, z)
2k

(6.1)

whereNNk(x) is the set of k nearest neighbours of x that are used to reduce the
cosine similarity for embeddings that manifest the hubness problem, charac-
terized by an excessive number of close neighbours.

In summary, the unsupervised learning algorithm for post-hoc alignment
of monolingual embeddings into a cross-lingual space is the following:

1. Build the initial bilingual lexicon L using one of the approaches in Sec-
tion 6.1.1.

2. Given the lexicon L, calculate W as the closed-form solution of the Pro-
crustes problem (Equation (3.2)).

3. Obtain an improved lexicon L by a nearest neighbour search among tar-
get embeddings yi and aligned source embeddings Wxi.

4. Repeat (2) and (3) for a fixed set of iterations or until a convergence cri-
terion is met.

6.1.3 APPLICATIONS IN UNSUPERVISEDMT

Pre-trained cross-lingual embedding spaces have been successfully used as
the initial source of a cross-lingual signal into unsupervised MT systems. We
use them in our experiments with both phrase-based and neural models. The
methods described in this section canbe extended to phrases andused to pop-
ulate a phrase table of an unsupervised phrase-based system (Section 6.2).

24 Available at https://github.com/artetxem/vecmap.
25 Available at https://github.com/facebookresearch/MUSE.



86

Alternatively, when the method is applied on the subword level, the aligned
cross-lingual subword embeddings can serve for initialization of the embed-
ding layer of an unsupervised neural model (Section 6.3).

6.2 UNSUPERVISEDPHRASE-BASEDMACHINETRANSLATION

PBMT models were introduced in Section 3.3.2 as log-linear models which
operate with phrases (n-grams) and have several components: phrase table,
language model, reordering model, and fixed word/phrase penalties. While
monolingual texts suffice for the calculation of the language model probabili-
ties and the fixed penalties, the phrase table and the reorderingmodel require
parallel data. The reordering model can be omitted in the initial version of
the system, but the phrase table is the essential component of the system that
facilitates translation. Populating the phrase table with translation candidate
phrases and their probabilities in an unsupervised way is the crucial part of
UPBMT.

TheunderlyingassumptionbehindUPBMT is theexistenceof sharedcross-
lingual embedding space where words and phrases are represented in a
language-neutral way. If we create such an embedding space, phrase trans-
lation candidates can be found by a nearest neighbour search and their trans-
lation probabilities can be derived from the cosine distance of their vector rep-
resentations.

UPBMT systems are created in several steps (Artetxe et al., 2018b):
• input text tokenization and truecasing;
• training of phrase embeddings (Section 6.2.1);
• mapping of phrase embeddings into the cross-lingual space (Sec-
tion 6.2.1);

• populating the initial phrase table (Section 6.2.2);
• estimation of an n-gram language model (Section 6.2.3);
• weight tuning of the log-linear model (Section 6.2.4);
• back-translation refinement (Section 6.2.5).
The training algorithm is displayed in Figure 6.1.

6.2.1 CROSS-LINGUAL PHRASE EMBEDDINGS

Phrase embeddings are learned by a generalization of the Skip-gram model
that learns embeddings for longer n-grams in addition to the individual word
embeddings as implemented in the phrase2vec26 library. We train phrase em-
beddings for the source and the target language individually. In order to trans-
form the twomonolingual embedding spaces in one cross-lingual embedding
space, we use the alignment technique described in Section 6.1 which relies

26 Available at https://github.com/artetxem/phrase2vec.
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on shared Arabic numerals for the initial solution and five iterations of self-
refinement.

6.2.2 INITIAL PHRASE TABLE INDUCTION

The next step is to populate the phrase table with translation candidate pairs.
For each source phrase, we search the embedding space to extract N nearest
neighbouring phrases in the target language and vice versa. The translation
probability of each candidate pair is calculated as follows

p(tgt|src) = ecos(src,tgt)/τ

∑
tgt′ ecos(src,tgt′)/τ

(6.2)

where src is the original source phrase, tgt is the selected translation and tgt′

iterates over the N possible translations. τ is a constant temperature parame-
ter controlling the confidence of thepredictions. In our experiments, we follow
Lample et al. (2018b) and set N = 100 and τ = 30.

6.2.3 LANGUAGEMODEL

The role of a language model in PBMT is to assign higher probability values
to more likely word sequences (n-grams). Since frequency counts are derived
from monolingual corpora, the estimation of n-gram probabilities is not in-
fluenced by the absence of parallel data. Back-off and smoothing techniques
(ManningandSchütze, 1999) are applied to adjust theprobability estimates for
unseen n-grams or n-grams with very low counts. In particular, we use modi-
fied Kneser-Ney smoothing (Heafield et al., 2013) implemented in the KenLM
toolkit.

6.2.4 UNSUPERVISED TUNING

In supervised PBMT, the MERT algorithm is used to tune the weights of indi-
vidual components of the log-linear model on a small parallel data set. Since
it is not available in the unsupervised setting, we first use the src→tgt PBMT
model with its default weights to translate a small portion of the monolingual
corpus and use the synthetic parallel data set for MERT tuning of the oppo-
site tgt→src model. The procedure is iteratively repeated in both translation
directions until convergence, as indicated in steps 7–11 of the training algo-
rithm (Figure 6.1).

6.2.5 BACK-TRANSLATION

Finally, we run several rounds of back-translation whereby we translate the
monolingual corpus by the src→tgt model and use the synthetic corpus for
PBMT training of the opposite tgt→src model in a standard supervised way.
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Input: Monolingual training corpora: trainsrc and traintgt

Monolingual development corpora: devsrc and devtgt

Output: Trainedmodels: modelsrc→tgt and modeltgt→src

Synthetic parallel training corpora:
(trainsrc_synth, traintgt) and (traintgt_synth, trainsrc)

Synthetic parallel development corpora:
(devsrc_synth, devtgt) and (devtgt_synth, devsrc)

1. ptsrc→tgt ← induce_phrase_table(trainsrc, traintgt)
2. pttgt→src ← induce_phrase_table(traintgt, trainsrc)
3. lmsrc ← train_lm(trainsrc)
4. lmtgt ← train_lm(traintgt)
5. modelsrc→tgt ← build_model(lmtgt, ptsrc→tgt)
6. modeltgt→src ← build_model(lmsrc, pttgt→src)
7. Repeat until convergence:
8. devsrc_synth ← translate(modeltgt→src, devtgt)
9. modelsrc→tgt ← tune_weights(modelsrc→tgt, devsrc_synth, devtgt)
10. devtgt_synth ← translate(modelsrc→tgt, devsrc)
11. modeltgt→src ← tune_weights(modeltgt→src, devtgt_synth, devsrc)
12. Repeat until convergence:
13. trainsrc_synth ← translate(modeltgt→src, traintgt)
14. modelsrc→tgt ← moses_train(trainsrc_synth, traintgt)
15. traintgt_synth ← translate(modelsrc→tgt, trainsrc),
16. modeltgt→src ← moses_train(traintgt_synth, trainsrc)

Figure 6.1: Unsupervised PBMT training algorithm. induce_phrase_table creates an initial
phrase table from monolingual embeddings as described in Section 6.2.2. train_lm trains
an n-gram language model. build_model uses default weights and pre-computed penalties
to build a translation model from the initial phrase table and the target language model.
tune_weights applies the MERT algorithm over the synthetic development set to find opti-
mal weights of the log-linear model. moses_train applies the full supervised PBMT training

algorithm (as described in Section 3.3.2) on a synthetic parallel corpus.

Full supervised training consists of estimating the phrase table and the re-
ordering model from the synthetic training corpus and MERT tuning on the
synthetic development set for finding the optimal weights. We repeat the pro-
cess in theopposite translationdirectionand refine the solution in several iter-
ationsofback-translation, as indicated in steps12–16of the trainingalgorithm
(Figure6.1). If themonolingual training corporaare large, theback-translation
procedure can be run on a smaller subset for higher efficiency. The original
paper (Artetxe et al., 2018b) suggests using 2M sentences.

6.3 UNSUPERVISED NEURALMACHINE TRANSLATION

In this section, we describe the methodology of unsupervised neural MT
(UNMT) adopted in our experiments. As we move from the phrase-based
translation toneuralmodels, weobserve that theprinciples ofUMTunderlying
the two types of models are similar.
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• The initial solution is obtained by pre-trained cross-lingual representa-
tions (mappedstatic embeddingsordeeper representations learneddur-
ing multilingual pre-training).

• Translation is learned together with a monolingual language modelling
objective (n-gram LM in UPBMT, denoising autoencoding in UNMT).

• The initial solution is refined using back-translation.

6.3.1 VOCABULARY

When training UNMT models, we work with monolingual corpora Dsrc

and Dtgt. Optionally, we might use additional monolingual corpora
Daux1, . . . , DauxN in auxiliary languages.

In all our experiments, the tokenized input is processed by a single BPE
model learned on the concatenation of the monolingual corpora, resulting in
a joint vocabulary that enables all languages to use shared embeddings. Us-
ing a single BPE model for both the source and the target language is a com-
mon practice in NMT in general but in UNMT it is an essential step to allow
themodel to align its internal representations of the source and the target lan-
guages. In experiments which entail multilingual pre-training using auxiliary
languages, the BPEmodel is learned on the concatenation of all available cor-
pora.

In case of disbalanced monolingual corpora in terms of their size, simply
concatenating all sentences can create a bias against low-resource languages
(Conneau and Lample, 2019). Therefore, we down-sample the larger corpus
before learning the BPEmodel.

6.3.2 ARCHITECTURE

The design of an NMT system needs to meet several requirements to be func-
tional for unsupervised translation. Firstly, a significant number of param-
eters needs to be shared among the languages in order to allow the model to
generate a shared latent spacewheremeaning is represented regardless of the
language it is expressed in (Lample et al., 2018b). Secondly, the initialization
of the model weights is vital to produce an initial solution and kick-start the
training process (Conneau and Lample, 2019).

Our UNMT systems consist of a Transformer encoder and decoder, both of
which are shared between the two languages. The shared encoder is essen-
tial for creating the shared space of cross-lingual latent representations, the
shared decoder serves for regularization. The encoder and the decoder have
the same 6-layer Transformer architecturewith 8 attention heads and the hid-
den size of 1024, language embeddings, GELU (Hendrycks and Gimpel, 2017)
activations, and a dropout rate of 0.1.
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Figure 6.2: Design of an UNMT model with pre-trained embeddings. In the pre-training
phase (top), a Skip-gram embedding model is trained on the concatenation of the monolin-
gual corpora. Alternatively, the embeddings can be created by post-hoc alignment of mono-
lingual embeddings (Section 6.1). The embedding layer weights and the tied output layer
weight of the NMTmodel are initialized with the pre-trained embeddings. In the fine-tuning
phase (bottom), the model is trained for translation using synthetic (back-translated) sen-

tence pairs with possible mistranslations.

6.3.3 PRE-TRAINING

There are several options to initialize the UNMTmodel:
• The encoder-decoder model is initialized randomly, only the token em-
bedding weights are copied from a pre-trained word embedding model.

• The encoder-decoder model is initialized with weights from a masked
languagemodel pre-trained on themonolingual corpora and copied into
both the encoder and the decoder as in Conneau and Lample (2019).

• The encoder-decoder model is initialized with weights of a bilingual or
multilingual denoising autoencoder (Liu et al., 2020) pre-trained on the
monolingual data in source and target languages, possibly in additional
auxiliary languages.

The different pre-training strategies are illustrated in Figures 6.2 to 6.4.

PRE-TRAINED EMBEDDINGS

Lample et al. (2018a) showed that pre-training cross-lingual embeddings to
initialize the embedding layers of anUNMTsystemprovides enoughof a trans-
lation signal to start the training. While other pre-training strategies focused
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Figure 6.3: Design of an UNMT model with pre-trained encoder. In the pre-training phase
(top), a masked language model is trained on the concatenation of the monolingual corpora.
The encoder of the MT system is initialized with the pre-trained weights. Alternatively, the
pre-trained encoder weights can be also copied to the decoder. In the fine-tuning phase (bot-
tom), the model is trained for translation using synthetic (back-translated) sentence pairs

with possible mistranslations.

on the entire encoder or the full MT system later proved more efficient, our
initial experiments used pre-trained embeddings.

If the source and the target language share the same alphabet, the simplest
approach is to train embeddings jointly on the concatenation of the source
and target monolingual corpora segmented into subword units Lample et al.
(2018b). If the alphabets are different or the simple approach does not provide
enough of a cross-lingual signal for successful initialization, the cross-lingual
embeddings are obtained by post-hoc alignment of monolingual embeddings
as described in Section 6.1.

PRE-TRAINED ENCODER

The goal of unsupervised pre-training is to use unlabeled data to learn a gen-
eral structure of text. Specifically, as shown in Chapter 3, MLM pre-training
learns deep bidirectional representations which carry information on each
word token and its context and can be used to initialize the encoder (and/or
decoder) weights of a Transformer NMT system.

During multilingual MLM training, the model is presented with one text
streamper language inevery training step. Randomtokensof aword sequence
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Figure 6.4: Design of an UNMT model pre-trained as denoising autoencoder. In the pre-
training phase (top), the entire encoder-decoder model is pre-trained on the denoising task
inmultiple languages. In the fine-tuning phase (bottom), themodel is trained for translation

using synthetic (back-translated) sentence pairs with possible mistranslations.

aremasked and themodel is trained to fill in themissing tokens given the con-
text. In particular, 15% of tokens are randomly sampled to be either replaced
by the [MASK] token (pMASK = 0.8), replaced by a random token (pRAND = 0.1)
or not changed at all (pKEEP = 0.1).

We pre-train Transformer (Vaswani et al., 2017) encoders on monolingual
corpora in multiple languages to learn a joint multilingual structure. The en-
coder can be pre-trained either only on texts in the source and the target lan-
guage or on texts in other related languages as well.

In our experiments, we copy the pre-trained encoder weights not only to
the encoder but also to the decoder.

PRE-TRAINED ENCODER-DECODER SYSTEM

Denoising autoencoding (DAE)was initially used during theUNMTfine-tuning
stage to stabilize the training (Artetxe et al., 2018d; Lample et al., 2018a). How-
ever, we propose to use it already in the pre-training stage either as a replace-
ment for MLM pre-training or as a subsequent step.

It is a monolingual training objective designed to teach the unsupervised
model to recover proper sentences from corrupted input. The loss for each
language l is the following

LAE(θenc, θdec) = Ex∼Dl,x̂∼dec(enc(C(x))(∆(x̂, x)) (6.3)
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where x is a sentence sampled from the monolingual data set Dl and x̂ is the
reconstructed sentence decoded from the noised version of x. The noise pro-
cess C(x) introduces random noise to a sentence x by dropping words with a
probability pdrop, masking words with a probability pmask = 0.1 and shuffling
words within a tunable window size.

Conneau and Lample (2019) initialize their system with pre-trained MLM
weights and later use DAE in the fine-tuning stage together with online back-
translation. Wepropose adifferentmethodwherewe initialize the systemwith
MLM weights, further train with the DAE objective and only then start fine-
tuning for translation without DAE. The results of our approach are given in
Section 7.3.

6.3.4 FINE-TUNING FOR TRANSLATION

OurUNMTsystemsare trainedonsynthetic datausingonlineback-translation
(sometimes also called on-the-fly back-translation) and on pseudo-parallel
data with a standard translation objective.

ONLINE BACK-TRANSLATION

Online Back-Translation (OBT) is a bilingual objective for training an unsuper-
visedmodel on synthetic translation samples generated by the model itself in
previous iterations. This procedure is crucial for UNMTwhere we do not have
access to any authentic parallel data resources. Back-translation is happening
on-the-fly during training where the model first generates a batch of synthetic
parallel data and immediately trains itself on it.

In the back-translation step, the model is first set to the inference mode
and used to translate a batch of sentences. The synthetic translations serve as
source sentences for a training step where the target side is the original sen-
tence.

LBT (θenc, θdec, l) = Ex∼Dl,x̂∼dec(enc(T (x))(∆(x̂, x)) (6.4)
where T (x) is the translationmodel itself which generates a synthetic transla-
tion of sentence x.

TRANSLATION SUPERVISED BY PSEUDO-PARALLEL DATA (PSEUDOPAR)

To fine-tune the model on pseudo-parallel data, the standard supervised MT
objective is used. In every step of the training, amini-batch of pseudo-parallel
sentences is passed into themodel which is trained tominimize the loss func-
tion

LP P ST (θenc, θdec) = E(x,y)∼PseudoPar,ŷ∼dec(enc(x))∆(ŷ, y) (6.5)
where (θenc, θdec) is the trainedmodel, (x, y) is a sentence pair sampled from the
pseudo-parallel data set PseudoPar, and ∆ is the cross-entropy loss.



94

Differentmethods to obtain pseudo-parallel datawill be discussed inChap-
ter 5.

TRANSLATION SUPERVISED BY PHRASE-BASED TRANSLATIONS (SYN-
THPAR)

In the first stage of UNMT fine-tuning, it can be beneficial to train on trans-
lations back-translated by a UPBMT system. Artetxe et al. (2018a) propose a
robust system of training UNMT models on a combination of synthetic trans-
lations by UPBMT and UNMT models, where the ratio of UPBMT translations
decreases as the trainingprogresses. In thiswork, wepost-process theUPBMT
translations to bemore suitable for MT training. The loss function is identical
to Equation (6.5), only the training data changes. Our experiments with Syn-
thPar training will be described in Section 7.2.

6.3.5 BASELINES

The baseline for our unsupervised MT experiments is the system of Conneau
and Lample (2019) who pre-train both the encoder and the decoder on the
bilingual MLM task and fine-tune using DAE and OBT.



7.

EXPERIMENTS & RESULTS
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Wecarried out several sets of experimentswith different unsupervisedMTap-
proaches and different language pairs. In each section, we focus on a spe-
cific unsupervised technique: UPBMT (Section 7.1), combining UPBMT and
UNMT (Section 7.2), unsupervised pre-training and initialization strategies
(Section 7.3), and training on pseudo-parallel data (Section 7.4). Finally, we
point out the limitations of unsupervised techniques (Section 7.5), and we
trainsemi-supervisedmodels inconditionswhereunsupervisedMTfails (Sec-
tion 7.6).

We have the following hypotheses regarding the outcomes of our experi-
ments.

• We hypothesize that UNMT can benefit from different cross-lingual in-
formation brought into the training by synthetic corpora produced by
phrase-basedmodels (Section 7.2).

• In contrast to Artetxe et al. (2020) who claim that online back-translation
tends to converge to the same translation quality regardless of the ini-
tialization strategy, we hypothesize that pre-training plays a key role in
UNMT and the quality of the initial solution has a strong link to the final
translation quality (Section 7.3).

• We hypothesize that existing UNMTmodels are not able to fully leverage
the cross-lingual signal present in monolingual data and we propose a
method to explicitly match similar sentences beforehand to present the
modelwith thematchedpseudo-parallel sentencepairs inaddition to the
unalignedmonolingual texts (Section 7.4).

7.1 PHRASE-BASED UNSUPERVISEDMT

Our first experiments with unsupervised MT cover German (DE) to Czech (CS)
translation. Although DE-CS is a high-resource languagepairwith access to sev-
eral million parallel sentences, we artificially impose restrictions prohibiting
the use of any parallel data to limit ourselves exclusively to monolingual data.
This scenariowasproposed in aWMT19 shared task onunsupervisedMT from
DE to CS and Sections 7.1 and 7.2 include passages from our systemdescription
paper (Kvapilíková et al., 2019).

In our initial experiments, we createUPBMTsystems for translation in both
directions. Following the strategy of Artetxe et al. (2018b) described in Sec-
tion6.2,wefirst trainmonolingual phrase embeddings,map themto the cross-
lingual space, anduse them to initialize thephrase table. We tune thehyperpa-
rameters of themodel and run several iterations of back-translation, following
the algorithm described in Figure 6.1. We then use the trained CS→DEmodel to
translate the Czechmonolingual corpus and create a synthetic parallel corpus
which can be used later for training an NMTmodel.
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7.1.1 DATA

We trained our models on the NewsCrawl27 corpus of newspaper articles col-
lected over the period of 2007 to 2018. We tokenized and truecased the text
using standard Moses scripts. Sentences with less than 3 or more than 80 to-
kens were removed. The resulting monolingual corpora used for the training
of theunsupervisedPBMTsystemconsistedof 70MCzechsentences and267M
German sentences.

We performed further filtering of the Czech corpus before the NMT train-
ing stage. Since there are a lot of Slovak sentences in the Czech NewsCrawl
corpus, we used the language tagger LangID (Lui and Baldwin, 2012) to tag all
sentences and remove theoneswhichwerenot taggedasCzech. After cleaning
the corpus, the resulting Czech training set comprises 62M sentences.

Since small parallel data was allowed to tune the unsupervised system, we
used newstest2013 for development of the UPBMT system. Finally, we used
newstest2012 for model selection.

7.1.2 MODEL & TRAINING

PHRASE EMBEDDINGS

We first train phrase embeddings (up to trigrams) independently in the two
languages. We use an extension of the word2vec Skip-gram model with neg-
ative sampling (Mikolov et al., 2013c) to train phrase embeddings. We use a
window size of 5, embedding size of 300, 10 negative samples, 5 iterations and
no subsampling. We restricted the vocabulary of each of the languages to the
most frequent 200,000 unigrams, 400,000 bigrams and 400,000 trigrams.

Having trained the monolingual phrase embeddings, we use VecMap
(Artetxe et al., 2018a) to learn a linear transformation to map the embeddings
to a shared cross-lingual space. We use a list of Arabic numerals as the initial
lexicon required to learn the mapping, as described in Section 6.1.

UNSUPERVISED PHRASE TABLE

The mapped embeddings are used to generate an unsupervised phrase table
which is populated with source and target n-grams. For the sake of a reason-
able phrase table size, only the 100 nearest neighbours are kept as translation
candidates for each source phrase. The phrase translation probabilities are
calculated as described in Section 6.2.2.
27 Available at http://data.statmt.org/news-crawl/.
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Figure 7.1: Step-by-step illustration of the iterative back-translation procedure.

INITIAL UPBMTMODEL

We followed the Monoses28 pipeline of Artetxe et al. (2018b) for our unsuper-
vised phrase-based MT training. The phrase-based models are estimated us-
ing Moses (Koehn et al., 2007), with KenLM (Heafield, 2011) for 5-gram lan-
guage modelling and fast_align (Dyer et al., 2013) for alignments. The feature
weights of the log-linear model are tuned using minimum error rate train-
ing (MERT) using both an authentic parallel dev set and a synthetic back-
translated dev set. The log-linearmodel of the initial system includes only the
language model, translation probabilities and lexical weightings. Reordering
model is introduced in further iterations.

BACK-TRANSLATION

Theback-translationprocess is illustrated inFigure7.1. Both DE→CS andCS→DE

systems are needed at this step. The DE→CS system is used to translate a por-
tion of the DEmonolingual corpus to CS and create a synthetic parallel data set,
which is then used to train the CS→DE system and the procedure cyclically con-
tinues. Note that we do not make use of the initial model for CS→DE. Once the
synthetic parallel data set is created, the problem turns into a supervised one
and we can use standard PBMT features, including the standard phrase table
extraction procedure and the reorderingmodel estimated on the aligned data
sets.
28 Available at https://github.com/artetxem/monoses.
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Authentic Dev Set Synthetic Dev Set
DE→cs CS→de DE→cs CS→de

Initial model 9.44 11.46 9.06 11.06
Iteration 1 11.11 12.06* 4.61 12.92
Iteration 2 7.26 6.78 11.70 14.22*
Iteration 3 1.06 2.32 12.06 14.07
Iteration 4 - - 5.65 13.67
Iteration 5 - - 11.69 14.18
Iteration 6 - - 11.56 13.96

Table 7.1: Results of thePBMTmodels onnewstest2012. The systems in the left two columns
were tuned on the parallel newstest2013 (3K sentence pairs) and iteratively refined on 2M
synthetic sentence pairs. The ones in the right two columns were tuned on a synthetic set
(10Kback-translatedsentencepairswhich remainfixed throughout theexperiment) and iter-
atively refined on 4M synthetic sentence pairs. * indicates the best-performing CS→DEmod-

els selected for creating the synthetic parallel corpora.

Since back-translation is computationally demanding, we experiment with
using a synthetic corpus of 2 and 4 million sentences for back-translation
rather than translating the entire monolingual corpus.

7.1.3 RESULTS & DISCUSSION

We evaluate various UPBMT models to select the best candidate and observe
an increasing translation quality with the first rounds of back-translation (Ta-
ble 7.1).We note that even the initial model induced from the mapped embed-
ding space producesmeaningful translations with a BLEU score of 9.4 (DE→CS)
and 11.5 (CS→DE). The quality increases with back-translation up to 12.1 and
14.2 BLEU, respectively.

We experiment with tuning the models both on an authentic parallel de-
velopment set (3K sentence pairs) and a synthetic back-translated develop-
ment set (10K sentence pairs). In the first scenario, possibly as a result of a
smaller development set, the model started diverging after the first round of
back-translation. In the second scenario, despite the synthetic nature of the
development data, the models converge to a higher BLEU score. The best re-
sult is achieved after two and three rounds of back-translation for the CS→DE

and DE→CSmodel, respectively (see the results in Table 7.1). As we were suspi-
cious about the superior results of the systems tuned on synthetic rather than
authentic data, wemanually evaluated a randomsample of 100 translations by
the best-performing CS→DE system fromeach of the scenarios. After reviewing
the translations and despite the BLEU results, we conclude that the bestmodel
refined with an authentic dev set produces superior translations especially in
terms of word order.
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SYNTHETIC CORPORA

Wetranslateda randomsubset of 30Msentencesof the targetmonolingual cor-
pus fromCzech to German using the two best performing CS→DE PBMTmodels
(15M sentences each). The resulting synthetic corpus exhibits various errors,
which we attempted to address as described in the following paragraphs. The
final cleaned corpus size is 26M parallel sentences.

We detected three error patterns that are not easily detectable by BLEU but
have a significant impact on human evaluation:

• German translations contaminated with words in other languages, espe-
cially Slovak;

• wrong word order (e.g. in contrast to the Czech word order, verbs in sub-
ordinate clauses and verbs following a modal verb should be placed at
the end of a sentence in German);

• non-translated Czech words in German sentences (e.g. a German syn-
thetic phrase auf písčitém Küste where the Czech word písčitém (sandy) re-
mains non-translated);

• randomlymistranslated named entities (NEs) (e.g. king Ludvik translated
as king Harold or Brno translated as Kraluv Dvur).

HEURISTICS TO IMPROVE SYNTHETIC CORPORA

In order to reduce the detrimental effects of the above errors on subsequent
NMT training, we devised several post-processing strategies. Here we sum-
marize the final versions of the corpora:

• SynthPar-Initial: The best-performing PBMTmodel was used for creating
the synthetic training corpus for the initial training of the NMT model.
We used a language tagger LangID (Lui and Baldwin, 2012) to tag all syn-
thetic sentences and remove the ones whichwere not tagged as German.

• SynthPar-noCzech: We cleaned the German side of the synthetic corpus
by removing the Czech words which the PBMT model failed to translate
and only copied. We identified words with Czech diacritics and replaced
them on the German side with the <unk> token.

• SynthPar-noCzech-reordered: The corpus was further treated to eliminate
the problem of wrong word order on the German side of the synthetic
parallel corpus. We shuffled words in the synthetic German sentences
within a 5-word window and mixed the reordered sentences into the
original ones. We essentially doubled the size of the training corpus by
first reordering odd-indexed sentenceswhile keeping even-indexed sen-
tences intact and then vice versa.
The motivation for the augmentation was to prevent the NMT system
from copying German source words directly into the target and sup-
port the NMT system in learning to handle word reordering. Ideally, the
model should learn that Germanword order need not be strictly followed
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when translating to Czech. This feature is easy to observe in authentic
parallel texts but the synthetic corpora are too monotone. We are aware
of the fact that a 5-wordwindow is not sufficient to illustrate the reorder-
ing necessary for German verbs butwe did not want to introduce compo-
nents which would be too language-specific to our technique.

• SynthPar-noCzech-reordered-NEs: The corpus was further treated to alle-
viate the problem of mistranslated NEs present in the data. NEs were
identified in the monolingual Czech corpus by a NE recognition tagger
NameTag29 (Strakováet al., 2014) trainedon theCzechNamedEntityCor-
pus 2.030 and aligned with the synthetic German size by fast_align (Dyer
et al., 2013). If the German counterpart was close enough (Levenshtein
distance of at most 3) to the Czech original, we trusted the translation.
If not, they were either removed from the corpus (geographic names) or
copied from the source Czech size (numbers, personal names, institu-
tions, media names, artifact names and time expressions as recognized
by NameTag). More details about the procedure are given in Kvapilíková
et al. (2019).

7.1.4 TAKEAWAYS

We created UPBMT models for translation between German and Czech. The
models reach a BLEU score of over 10 points in both translation directions
which can be considered a good result given that they were trained without
any translation resources. However, the translations suffer from several re-
peating error patterns: named entities are oftenmistranslated, theword order
is wrong, and the translations include non-translated words from the source.

There is a potential for reaching a higher translation quality by training an
NMT model on synthetic translations generated by the phrase-based model,
especially if the translations are post-processed to prevent the known er-
ror patterns from contaminating the NMT training. The experiments with
NMTmodels trained on post-processed UPBMT-generated corpora will be de-
scribed in the following Section 7.2. For comparison of our UPBMT systems
to a supervised benchmark, please also refer to the next section. Since train-
ing a UPBMT system requires less data than any neural system, it can be used
to create an initial translator that generates training data for neural machine
translation or for fine-tuning a large language model.

7.2 HYBRID UNSUPERVISEDMT

In this section, our goal is to improve the solution of the unsupervised DE→CS

translation task from our previous experiments. The systems covered here

29 Available at http://ufal.mff.cuni.cz/nametag.
30 Available at http://ufal.mff.cuni.cz/cnec/cnec2.0.
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are termed“hybrid”due to theirneuralmodel architecturewhich incorporates
PBMT-generated synthetic data during training. We compare the results to a
supervised benchmark to evaluate the gap between unsupervised and super-
vised models. Furthermore, we compare to a pivoting benchmark where we
translate from German to Czech via English.

7.2.1 DATA

Our models are trained on 26M sentence pairs where the source German size
was generated by an unsupervised PBMT system described in Section 7.1.3
and the target Czech data of the same size is authentic from NewsCrawl. We
train themodel on several variations of the synthetic corpus described in Sec-
tion 7.1.3 as we attempt to fix the errors present in the PBMT translations. We
used newstest3013 for validation and newstest2019 for testing.

For training the supervised benchmark model, we used the following
Czech-German parallel corpora available at the OPUS31 website: OpenSubti-
tles (18M), MultiParaCrawl, Europarl, EUBookshop, DGT (5M), EMEA and JRC.
The combined dataset has 26M sentence pairs.

For the training of the pivotingCzech-English-Germanmodel, we extracted
26M sentence pairs from the CzEng 1.6 corpus of Czech-English parallel data
and 26Msentence pairs from theEuroparl (2M), EUBookshop (10M) andOpen-
Subtitle (14M) corpora.

7.2.2 MODEL & TRAINING

MODEL ARCHITECTURE

Weuse the Transformer architecture described in Chapter 6 to train the DE→CS

hybrid models.

TRAINING ON SYNTHETIC DATA

We experiment with different methods of MT training on synthetic parallel
sentences. With regard to the terminology introduced in Chapter 6, we use
online back-translation (OBT) where synthetic sentence pairs are generated
on-the-fly by the UNMT system, and compare to training on a full synthetic
parallel corpus (SynthPar) generated by a UPBMT system prior to the training.

Our systems trained exclusively on the SynthPar corpus are unidirectional
(DE→CS) whereas systems trained with OBT must be bidirectional (DE↔CS).
While the unidirectional models are trained from scratch, the bidirectional
models are pre-trained on the MLM task as described in Section 6.3.

Due to smaller andnoisier training data, we set the dropout betweenTrans-
former layers to 0.3, which is higher than the typical dropout rate used in su-

31 Available at http://opus.nlpl.eu/.
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Figure 7.2: Schematic illustration of the training pipeline of our models. The size of the
blocks is not proportional to training time.

pervised systems. We train all models on 8 GPUs with a batch size of 2,400
tokens per GPU. We train our unidirectional models in the Marian toolkit
(Junczys-Dowmunt et al., 2018) and thebidirectionalmodels in theXLMtoolkit
(Conneau and Lample, 2019) with the same hyperparameters. The training
pipeline of different systems is illustrated in Figure 7.2. The rest of the hyper-
parameters are given in Appendix A.2.

• The Unidir-SynthPar system was trained on the initial synthetic data set
SynthPar-Initial until convergence (249k steps) and then fine-tuned on
the SynthPar-noCzech corpus for 12k steps, and for another 12k steps on
SynthPar-noCzech-reordered.

• The Unidir-SynthPar-NEs system is a result of additional 12k fine-tuning
steps on the SynthPar-noCzech-reordered-NEs corpus. Although the effect
of this fine-tuning on the final translation might not be significant in
terms of BLEU points, the problem of mistranslated named entities is
perceived strongly by human evaluators and warrants an improvement.

• The Bidir-OBT is a UNMTmodel trained without any UPBMT component.
It is a bidirectional model pre-trained on MLM and fine-tuned using on-
line back-translation (OBT) and denoising autoencoding (DAE).

• The Bidir-SynthPar-OBT is a bidirectional model pre-trained onMLM and
fine-tuned for translation using a combination of the SynthPar-noCzech
(70%) and SynthPar-noCzech-reordered-NEs (30%) corpora together with
online back-translation. After 10k training steps, the synthetic corpus
is dropped and the model is trained with online back-translation until
convergence. We assume that keeping the less-fluent UPBMT-generated
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DE→CS
BLEU chrF++ COMET

UPBMT 11.6 38.0 0.59
UNMT (Bidir-OBT) 14.6 39.2 0.72
Unidir-SynthPar* 15.0 40.8 0.74
Unidir-SynthPar-NEs* 14.3 40.5 0.74
Bidir-SynthPar-OBT 16.7 42.6 0.79
Benchmark-Supervised 18.8 44.7 0.83
Benchmark-Pivot 15.1 40.1 0.75

Table 7.2: Our unsupervised hybrid systems and their performance on newstest2019. For
more details on the UPBMTmodels please refer to Section 7.1. * indicates models submitted
for theWMT19 shared task. TheWMT19winning system (Marie et al., 2019) scored 3.4 BLEU
points more than our best system but it was fine-tuned on 16.6k parallel sentences provided
by the organizers for validation so it cannot be directly compared to our fully unsupervised

systems.

training corpus for too long might have a detrimental effect on the final
quality.

BENCHMARKS

For comparison, we created an NMT systemwith the same architecture as our
unsupervised models but trained it in a supervised way on the DE-CS parallel
corpus of 8.8M sentence pairs (Benchmark-Supervised).

We also compare our results to the pivoting approach (Benchmark-Pivot)
which is composed of two supervised models, DE→EN and EN→CS, trained on
available parallel corpora. We eventually translate from German to Czech us-
ing the combination of the twomodels.

7.2.3 RESULTS & DISCUSSION

The scores of the systems on out test set are reported in Table 7.2. They
demonstrate that we can significantly elevate translation quality by training
anUNMT systemon theUPBMT-generated synthetic data. COMET and chrF++
metrics are in line with the BLEU score.

TRAINING ON SYNTHETIC DATA

We were interested in evaluating the effect of employing synthetic data from
various origins. The Bidir-OBT model was trained exclusively on UNMT-
generated data, Unidir-SynthPar was trained exclusively on UPBMT-generated
data, and Bidir-SynthPar-OBT was trained on both.

Due to the differences in their uni/bidirectional design and pre-training,
the Bidir-OBT and Unidir-SynthPar models cannot be assessed only based on
the nature of the data used for training. While Bidir-OBT is trained for transla-
tion in both directions indicated by language embeddings, the Unidir-SynthPar
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model specializes in DE→CS translation which puts it at an advantage. On the
other hand, the Bidir-OBT model was pre-trained on theMLM taskwhere it had
the opportunity to internally align cross-lingual representations and use them
for unsupervised translation.

Bidir-OBT is outperformed by Unidir-SynthPar but the difference is not sta-
tistically significant. However, we clearly observe the benefit of combining
the two approaches to synthetic data generation. Upon comparison of the
bidirectional Bidir-OBT and Bidir-SynthPar-OBT models which differ only in
one training stage (see Figure 7.2), we conclude that incorporating UPBMT-
generated data into the first stages of UNMT training brings a significant im-
provement of ∼2 BLEU points over the Bidir-OBT system trained using online
back-translation only. The UPBMT-generated synthetic corpus is a valuable
source of a cross-lingual signal to the UNMTmodel.

ONLINE BACK-TRANSLATION

It must be noted that while the UPBMT-generated translations were produced
by a finished model, the UNMT-generated synthetic sentence pairs are pro-
duced on-the-fly byOBTand are of progressively increasing quality, starting at
translations full of repeating punctuation marks and copied (non-translated)
words. Wehad a closer look at the quality of the back-translated sentences and
made the following observations.

• After 1k training steps the structure of OBT translations already starts
corresponding to the source sentence.

• It takes several more iterations to get rid of most mistranslations
and copied German source words. For example, at 1k training steps,
the German sentence “Krähen stehen unter Naturschutz.” (“Crows are pro-
tected by nature conservation laws.”) is translated as “Krämerovy houby stojí
mimo Naturschutz”, where “Naturschutz” is copied and “Krämerovy houby”
(“Krämer’s mushrooms”) is a complete mistranslation motivated by a sub-
word overlap of the first word.

• Although the translation is subword-based, it happens only rarely that
a part of a word would remain non-translated, e.g. “Erfolgverprechende”
(“promising” translated as a non-existent word “Erfolgtivní”). Even in long
German compound words which mostly get copied as a whole (e.g. “Wit-
terungsbedingungen”). This is likely the result of MLM pre-training and
possibly also the fairly big BPE vocabulary of 60k units.

NAMED ENTITY TRANSLATION

We showed in Section 7.1 that UPBMT systems suffer from frequentmistrans-
lations of named entities. After our experiments with UNMT and hybrid sys-
tems, we confirm that name translation is also a challenge for UNMT and hy-
brid systems.
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Sentences with NEs Sentences with no NEs
Unidir-SynthPar 28% 26%
Unidir-SynthPar-NEs 52% 28%
No winner 20% 46%

Sentences with NEs Sentences with no NEs
Bidir-OBT 22% 18%
Bidir-SynthPar-OBT 38% 40%
No winner 40% 42%

Table 7.3: Results of manual evaluation of three systems on a stratified subset of the val-
idation data set created by randomly selecting 100 sentences with NEs and 100 sentences

without NEs.

In Section 7.1.3, we attempted to mitigate the problem by post-processing
the UPBMT-generated corpus. This corpus was used in the training of the
Unidir-SynthPar-NEs and Bidir-SynthPar-OBT models. Table 7.3 summarizes the
improvement we gained by introducing such named entity treatment. We
manually evaluated the following systems on a stratified subset of the valida-
tion data set created by randomly selecting 100 sentences with NEs and 100
sentences without NEs: Unidir-SynthPar against Unidir-SynthPar-NEs and Bidir-
OBT against Bidir-SynthPar-OBT. The results show that despite the decrease in
the BLEU score we see in Table 7.2, fine-tuning of the Unidir-SynthPar model
on a synthetic corpus with amended NEs proved beneficial in 52% of tested
sentences which included NEs and it did not harm in 20% of sentences. When
comparing the two systems on sentences with no NEs, their performance is
very similar.

The translations by Bidir-SynthPar-OBT are superior to the translations by
Bidir-OBT both in terms of named entities and general quality which is in line
with the results from Table 7.2 and confirms that training on the SynthPar cor-
pus with NE treatment reduces the problem of mistranslated names.

Translations by bidirectional models with MLM pre-training suffer less
from the problem of mistranslated NEs than the unidirectional models which
rely on the PBMT synthetic corpora for all cross-lingual signals. Nevertheless,
incorrectly translatednamescontinue tobeoneof themost seriouserrors gen-
erated by unsupervised translation systems. See Table 7.4 for a sample trans-
lation.

7.2.4 TAKEAWAYS

The UPBMT-generated synthetic corpus serves as a valuable source of cross-
lingual signals for UNMT models. Such hybrid models consistently achieve
higher quality compared to pure neural models. The synthetic corpus brings
the most value at the beginning of the training when the UNMT model is not
yet able to generatemeaningful translations on its own. Once theUNMTmodel
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Source Phrase
Original Der LyrikerWerner Söllner ist IMWalter.
Reference BásníkWerner Söllner je tajný agentWalter.
PBMT Český prozaikMiroslav Mišák je agentem StB Josef .
Unidir-SynthPar Prozaik Filip Bubeníček je agentem StB Josefem.
Unidir-SynthPar-NEs Prozaik Filip Söllner je agentem StB Ladislavem Bártou.
Bidir-OBT Lyrik Jiří Söllner je IMWalterman.
Bidir-SynthPar-OBT ProzaikWerner Söllner je IMWalterman.

Table 7.4: Sample translations showing that fine-tuning on synthetic corpus with cleaned
NEs (Unidir-SynthPar-NEs and Bidir-SynthPar-OBT) alleviates a part of the NE problem. How-
ever, note the imperfect translation of Lyriker as novelist rather than poet. The bidirectional
systems seem to be more prone to copying which can help for some NEs but also hurt, e.g.
copying the word IM rather than recognizing it as a shortcut for “inoffizieller Mitarbeiter” and

translating it as secret agent.

attains a satisfactory level of quality, it is advisable to phase out the initial syn-
thetic corpus, as it canpotentially impede further training. If theUNMTsystem
is initialized well, the training starts successfully, and at 1k training steps we
observe that the UNMT starts generating meaningful translations.

UPBMT-generated synthetic corpus could also be used for fine-tuning an
LLM when no other data is available for a given language. We nevertheless
remind researchers that UPBMT-generated data is unstable and can cause
volatility in the final performance. Furthermore, recent results have shown
that LLMs exposed to an extensive amount of AI-generateddatamight collapse
and produce gibberish results (Wenger, 2024). Aswe observedwithmediocre-
quality synthetic parallel corpus, best results are likely to be obtained when
avoiding this resource in the very last training phase.

In our view, one of the most significant types of translation errors in unsu-
pervised systems involves a high frequency of randomlymistranslated named
entities. This problem isnot adequately addressedby theBLEUscorebut it has
a considerable impact on the perceived translation quality. We have concen-
trated our efforts on mitigating this issue during the fine-tuning of the UNMT
system by rectifying NEs in the synthetic training corpus. Some names were
deleted, otherswere replacedby adirect copy from the source language. While
our approach may not be flawless, we believe that an omitted named entity
or a non-translated named entity is less detrimental than a randomly substi-
tuted one. Unfortunately, this approach to amending NEs can only be applied
to languages with a name tagger available, which is not the case formany truly
low-resource languages.

In the next experiments, we will be working only with bidirectional UNMT
systems and focus on their ability to create cross-lingual internal representa-
tions in the pre-training stage of the training pipeline.
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7.3 EFFECT OF PRE-TRAINING STRATEGIES

A number of pre-training and initialization strategies have been proposed
since the inception of UNMT. The first models were initialized with cross-
lingual embeddings (Lample et al., 2018a; Artetxe et al., 2018d). A significant
increase of translation quality came after discovering the benefits of cross-
lingual MLM pre-training (Conneau and Lample, 2019). The latest UNMT sys-
tems rely onmultilingual pre-training of the entire encoder-decodermodel on
some variation of a denoising task (Liu et al., 2020). We measure the effect of
different pre-training strategies on the final translation quality and propose
a combined approach which yields the most favourable results across differ-
ent languagepairs. Furthermore,wehypothesize thatpre-trainingonmultiple
languages could help the model create a language-neutral internal represen-
tation space and lead to a more effective initialization of weights for unsuper-
vised translation.

A more thorough exploration of the multilingual aspects of UMT is not the
goal of this book but it was studied in Sun et al. (2020) or Üstün et al. (2021).

We evaluate the effect of pre-training strategies on the following language
pairs in the legal domain: German-Upper Sorbian (DE-HSB), English-Georgian
(EN-KA), English-Kazakh (EN-KK) and English-Ukrainian (EN-UK).

7.3.1 DATA

The DE and HSB monolingual training data as well as the parallel validation
and test sets were provided in the WMT22 unsupervised shared task (Weller-
Di Marco and Fraser, 2022). The auxiliary CS monolingual corpus is a random
selection of 26M sentences from NewsCrawl. The monolingual training data
for EN, KA, KK and UK come from the Oscar32 corpus and the MT4All shared task
(de Gibert Bonet et al., 2022) which provided domain-specific data from the
legal domain. The training data summary is given in Table 7.5. The English-
centric validation and test sets were taken from the Flores Evaluation Bench-
mark (Costa-jussà et al., 2022). In addition, the legal test sets from the MT4All
shared task were used for evaluation.

For our side experiments with supervised pre-training on parallel texts in
Czech-German (CS-DE) and English-Georgian (EN-KA). For EN-KA, we used the
CCAligned corpus available at OPUS. For CS-DE, we trained on a random sam-
ple of 5M parallel sentences from the OPUS website: OpenSubtitles, Multi-
ParaCrawl, Europarl, EUBookshop, DGT, EMEA and JRC.

The data was tokenized and split into BPE units using the fastText (Joulin
et al., 2016) library. We shared one BPE vocabulary of 55k entries for EN-KA-KK-
UK and another vocabulary of 18k entries for CS-DE-HSB.

32 Available at https://oscar-project.org/.
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DE-HSB CS-DE EN-KA EN-KK EN-UK
train (mono) 29.4M/0.9M 26M/29.4M 17.1M/6.6M 17.1M/7.7M 17.1M/17.3M
train (para) - 5M 1M - -
dev 2k 3k 1k 1k 1k
general test 1.6k - 1k 1k 1k
legal test - - 1k 1k 1k

Table 7.5: Number of sentences used for unsupervised training and evaluation. The para
data was only used for training the transfer learning benchmarks.

7.3.2 MODEL & TRAINING

MODEL ARCHITECTURE

We use the Transformer architecture described in Chapter 6 to train all our
models.

PRE-TRAINING STRATEGIES

We experiment with the following pre-training tasks introduced in Chapter 6
to determine the optimal strategy for further experiments:

1. Skip-gram for static embeddings with post-hoc mapping;
2. cross-lingual masked language modelling (MLM);
3. denoising autoencoding (DAE);
4. MLM followed by DAE.
The details of MLM and DAE pre-training were given in Chapter 6. All mod-

els are fine-tuned using OBT or OBT+DAE, depending whether DAE was a part
of the pre-training stage.

Both MLMs and DAEs are either trained in a bilingual fashion on a combi-
nation of samples in the source and the target languages, or in a multilingual
fashiononsamples in several auxiliary languages. The langugeof the sentence
or the text stream is indicated to the model by language embeddings. We pre-
train both bilingual andmultilingual versions of theMLMs andDAEs to be able
to draw conclusions about the effects of multilingual pre-training.

MLMpre-training was proposed by Conneau and Lample (2019), while DAE
was later used by Liu et al. (2020) for pre-training of the mBARTmodel which
brought state-of-the-art results in UMT. We compare the two approaches and
propose a modification where we first pre-train an MLM encoder, use it to ini-
tialize both the encoder and the decoder of a full Transformermodel and con-
tinue pre-training as a denoising autoencoder. While MLM pre-training helps
the encoder and decoder separately to create cross-lingual representations,
DAE prepares the full model for conditional text generation. We believe that
combining the two strategies will allow the model to benefit from both.

Furthermore, combiningMLMandDAEallowsus todrop thedenoising task
from the fine-tuning stage. The denoising training objective was proposed
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Figure 7.3: Schematic illustration of the training pipeline of our models. The size of the
blocks is not proportional to training time.

by Artetxe et al. (2018d) and Lample et al. (2018a) to stabilize the training of
UNMT.We found that dropping it does not cause any harm, provided that DAE
was a part of the pre-training stage. Therefore, this method also eases some
computational burden as we pre-train the model only once, enabling subse-
quent experiments with various fine-tuning strategies. This is especially use-
ful in the case of multilingual pre-training. We will focus on fine-tuning the
models for translation in the next round of experiments which will be de-
scribed in Section 7.4.

TRAINING DETAILS

Monolingual embeddings are trained on the subword-segmented training cor-
pus using the Skip-gram approach described in Section 3.1.1. We keep the de-
fault hyperparameters of the word2vec33 implementation and train the em-
bedding model for 5 epochs using 10 negative samples and a 5-word window.
We align the embeddings into a bilingual embedding space using the MUSE34

library where we train an adversarial model with 5 iterations of refinement.
The MLMs are trained on mini-batches with 64 text streams (fixed-length

segmentsof textswhichgobeyondsentenceboundaries) perbatch, 256 tokens
per stream. 15% of the tokens aremasked. The details of themasking of input
sentences were given in Section 6.3.3. All models are trained on 8 GPUs.

33 Available at https://github.com/tmikolov/word2vec.
34 Available at https://github.com/facebookresearch/MUSE.
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The DAEs are trained on data noised by shuffling tokens within a 3-token
window, droppingwordswith a probability pdrop = 0.1 andmaskingwordswith
a probability pmask = 0.1. We train sentence-by-sentence on 8 GPUswith 3,400
tokens per batch.

Fine-tuning for MT using online back-translation is run on 8 GPUs with
mini-batches of 3,400 tokens per GPU using Adam optimization with a linear
warm-up (beta1=0.9, beta2=0.98, lr=0.0001). Greedy decoding is used
during back-translation. For evaluation, we use beam search with beam size
set to 6.

7.3.3 RESULTS & DISCUSSION

UNSUPERVISED PRE-TRAINING STRATEGIES

In contrast with the conclusions of Artetxe et al. (2020), we argue that the
translation quality of UMT systems is highly sensitive to the choice of the pre-
training and initialization strategy. The initial solution ignites further train-
ing by back-translation and if the pre-training stage fails to deliver this solu-
tion, the model never starts learning. It can be observed in the case of EN-KK
translation where only the MLM pre-training allows the model to initiate the
back-translation process while other pre-training strategies trap themodel in
a suboptimal solution with no translation capabilities, similar to random ini-
tialization.

We select the best performing versions (bilingual or multilingual) of the
proposed pre-training strategies (MLM, DAE, and MLM followed by DAE) and
evaluate their benefit over random initialization of the model with no pre-
training at all and over theweak initialization of the embedding layer only. The
results are summarized in Table 7.6.

As expected, a meaningful initialization is one of the key features of the
UMT design and without it the models are impossible to train. At minimum,
the embeddingsneed to startwith somecross-lingual signal, although this sig-
nal might not be strong enough to yield high translation quality, particularly
for linguistically distant languages. In line with the conclusions of Conneau
and Lample (2019), we observe a major increase in DE-HSB translation quality
(∼ 13 BLEU) upon the introduction of MLM pre-training.

While we cannot establish a clear winner between MLM and DAE pre-
training strategies, we reached a significant improvement with a combination
of the two. Further pre-training of the initialized model with a DAE objec-
tive can boost performance by additional ∼6 BLEU points in the case of DE-HSB

translation, and ∼8 BLEU points in the case of UK-EN translation. However, we
observe that the combined strategy fails to deliver the initial solution for the
EN↔KK model. In the subsequent experiments, we will see how the situation
can be alleviated in the fine-tuning stage (Section 7.4).
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DE-HSB HSB-DE EN-KA KA-EN EN-KK KK-EN EN-UK UK-EN
No pre-training 2.9 2.7 0.8 1.0 1.2 1.6 0.5 0.8
Pretr. embeddings 8.8 8.9 - - - - - -
MLM 21.6 22.2 4.4 5.2 3.6 4.9 7.4 10.7
DAE 21.2 24.1 1.8 2.2 1.9 2.7 3.7 5.4
MLM + DAE 27.3 30.6 5.9 6.3 1.2 1.3 10.1 13.5
Trivial transfer 28.9 33.6 - - 1.1 1.2 - -

Table 7.6: The impact of different pre-training strategies on translation qualitymeasured on
the validation sets by BLEU score.

TRIVIAL TRANSFER APPROACH

We decided to benchmark our unsupervised pre-training strategies against a
trivial transfer learning approach based on Kocmi and Bojar (2018). We pre-
trained two “parent” supervised models on parallel data: DE-CS translation
model on 5M parallel sentences and EN-KA translation model on 1M parallel
sentences. We used these to initialize the “children” (DE-HSB model and EN-KK
model, respectively) trained in an unsupervised way using OBT. The only re-
quirement for using this method is a shared vocabulary between the “parent”
and “child” models which is met in our setup.

The outcomes are documented in the last row of Table 7.6, and they lead to
contrasting conclusions for the two language pairs. While for DE-HSB transla-
tion, theDE-CSpre-training leads toan improvementofup to3BLEUpointsover
the best unsupervised pre-training strategy, EN-KK unsupervised translation
learning fails to ignite from the EN-KA initialization and results in downward-
sloping training curves.

We conclude that learning by back-translation can be bootstrapped from a
“parent” translation model but only if the two language pairs are closely re-
lated (such as CS and HSB). This is in contrast with the conclusions that hold for
supervised MT where a successful transfer of translation knowledge occurs
even for unrelated languages (Kocmi and Bojar, 2018). In practical use cases
of low-resource MT from monolingual data, if a related language pair with a
shared source or target language and abundant parallel data is available, it
seems reasonable to use it for pre-training rather than relying on one of the
fully unsupervised pre-training strategies.

MULTILINGUAL VS. BILINGUAL PRE-TRAINING

Finally, we aim to determine whether it is beneficial to include auxiliary lan-
guages in the pre-training stage. For DE-HSB translation, we compare the mod-
els pre-trained on bilingual (DE-HSB) data only to models pre-trained on mul-
tilingual (CS-DE-HSB) data and hypothesize that adding another Slavic language
into the pipeline may increase the final translation quality. For the remain-
ing language pairs, we pre-train both bilingually and on the combination of all
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EN, KA, KK, and UK training corpora. Note that these languages are linguistically
very diverse and use different scripts: Latin (EN), Cyrillic (KK, UK), and Mkhe-
druli (KA).

Table 7.7 shows BLEU scores on the validation sets. Asides from the lan-
guages included in thepre-training, differences in translationqualitymayalso
stem from the number of steps in each training stage which varies across ex-
periments and might influence the results. Therefore, we report the duration
of the training in Table 7.7 together with the results.

It proved to be difficult to draw a universal conclusion in favour of either
the bilingual or the multilingual pre-training setup. In contrast to our ini-
tial hypotheses, bilingual MLM pre-training is superior to multilingual MLM
for DE-HSB translation, and leads to a difference in the BLEU score of up to 3.8
BLEU points. It must be noted that the results are likely also influenced by
the fact that the bilingual MLM model has seen 6 times more DE and HSB sen-
tences than the multilingual model. Conversely, the situation is the opposite
for the English-centric language pairs where themultilingualmodel performs
better, despite the linguistic dissimilarity, and despite the fact that the bilin-
gualmodels were trained for slightly longer. We take theweights from the best
performing pre-trained MLM (the bilingual model for DE-HSB and the multilin-
gual model for the remaining language pairs) and train on a multilingual or
bilingual denoising task. Table 7.7 shows that bilingual DAE pre-training of
the MLM-initializedmodel is more effective than its multilingual counterpart.
Particularly, multilingual denoising of the EN-KAmodel harms theMLM initial-
ization and leads to a similar result as if no pre-training happened at all. For
other language pairs, bilingual pre-training is also superior. The difference is
especially pronounced in the case of the DE-HSB translation where it amounts
to 6–7 BLEU points.

Given the state-of-the-art MT results of the mBARTmodel (Liu et al., 2020)
pre-trainedviamultilingual denoising, our initial hypothesiswas that this pre-
training strategy would lead to competitive results in our setup as well. How-
ever, we were not able to fully exploit the benefits of multilingual DAE pre-
training in our conditions. There are several possible reasons for that. First
of all, the mBART model has substantially more parameters (12-layer Trans-
former with 16 heads and internal dimension 1024 vs. 6-layer Transformer
with 8 heads and internal dimension 512) and it was trained on entire docu-
ments in at least 25 languages. Furthermore,mBART relies on a slightly differ-
ent noise function to corrupt the training data. Pre-training a smaller model
on three or four languages did not have the desired effect on final translation
quality.
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MLM DE-HSB HSB-DE EN-KA KA-EN EN-KK KK-EN EN-UK UK-EN

multilingual 17.8 20.6 4.4 5.2 3.6 4.9 7.4 10.7
CS,DE,HSB (51k) EN,KA,KK,UK (33k)

bilingual 21.6 22.2 3.5 4.7 2.6 4.1 3.7 7.6
DE,HSB (304k) EN,KA (50k) EN,KK (40k) EN, uk (71k)

DAE DE-HSB HSB-DE EN-KA KA-EN EN-KK KK-EN EN-UK UK-EN

multilingual 21.2 24.1 1.8 2.2 1.9 2.7 3.7 5.4
CS,DE,HSB (200k) EN,KA,KK,UK (71k)

bilingual 19.2 21.4 - - 1.8 2.5 - -
DE,HSB (195k) - EN,KK (189k) -

MLM + DAE DE-HSB HSB-DE EN-KA KA-EN EN-KK KK-EN EN-UK UK-EN

multilingual 21.3 23.4 0.7 0.8 1.2 1.3 9.3 12.8
CS,DE,HSB (51k+100k) EN,KA,KK,UK (33k+82k)

bilingual 27.3 30.6 5.9 6.3 1.2 1.3 10.1 13.5
DE,HSB (304k+102k) EN,KA (33k+67k) EN,KK (33k+67k) EN,UK (33k+76k)

Table 7.7: The impact of bilingual and multilingual pre-training strategies on translation
quality measured by BLEU score on the validation sets. The highest BLEU scores per lan-
guage pair and category are indicated in bold. If more than one figure is bold, the difference
is not statistically significant. We also report training duration in terms of the number of
training steps and indicate if it is considerably higher in either the bilingual or the monolin-

gual setup.

7.3.4 TAKEAWAYS

We experimented with different pre-training tasks and conclude that the
translation results are highly sensitive to the choice of the pre-training strat-
egy. For most of our models, the most effective approach is to first initiate
the weights based onMLM, follow it with DAE pre-training, and only then start
fine-tuning for translation. The combination of these twoobjectives in thepre-
trainning stage is novel, as most authors use either one or the other. Although
DAE is customarily used later in the fine-tuning stage of the UNMT pipeline to
stabilize the training, we observe a positive impact of isolating it into the pre-
training stage. However, especially when auxiliary languages are used, this
strategy carries the risk of distorting the initial solution and hindering further
learning. In such cases, reverting to the approach of MLM pre-training and
OBT+DAE fine-tuning is the optimal choice.

Just as we were not able to universally assert the dominance of multilin-
gual pre-traing over bilingual pre-training, a similar question remains open
for LLM trainingwheremultilingualmodels andEnglish-centeredmodels per-
form differently at different tasks. Translation between high-resource lan-
guages is proficiently handled by English-centered LLMs such as GPT-4 (Ope-
nAI et al., 2024) but low-resource languages require additional coverage in the
trainingdata. Being exposed to text data across anumber of languages teaches
the models to recognize linguistic patterns, understand cross-linguistic simi-
larities, and generalize language structures, but it can also lead to challenges
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such as balancing performance across languages, managing conflicting lin-
guistic rules, and mitigating biases that arise from uneven data quality and
representation.

In this section, we also explored the benefits of transfer learning for un-
supervised MT and we conclude that if a related language pair with parallel
data is available, it is recommended to consider initializing an unsupervised
MT model with parameters obtained during supervised MT training on that
related pair. However, the translation transfer does not work for unrelated
languages.

It must be noted that translation quality for the most linguistically dissim-
ilar language pairs (EN-KK and EN-KA) is low (below 7 BLEU points). We will be
working on improving the translation quality for remote languages in the next
experiments.

7.4 BOOSTING UNSUPERVISEDMTWITH PSEUDO-PARALLEL
DATA

In this section, we measure the effect of incorporating pseudo-parallel sen-
tences into unsupervised MT. We hypothesize that they can serve as a new
source of cross-lingual information that themodel can benefit from. Although
pseudo-parallel sentences are not perfect translation equivalents, we believe
that they can improve the translation quality nonetheless, especially when
used in the beginning of the training.

We employ the same methodology as in our previous experiments de-
scribed in Section 7.3, and we incorporate an additional training step where
the pseudo-parallel corpus is used to train the NMT system with a standard
supervised MT objective. We experiment with different training schedules to
determine when to incorporate the pseudo-parallel data and when to remove
it from the training.

The experiments from this sectionwere published inKvapilíková andBojar
(2023) and some portions of text and tables are taken verbatim from there. We
evaluate on the same language pairs as in the previous Section 7.3 (DE-HSB, EN-
KA, EN-KK, EN-UK).

7.4.1 DATA

We use the same data as described in Section 7.3.1 for the experiments in this
section.

7.4.2 MODEL & TRAINING

MODEL ARCHITECTURE

We use the Transformer architecture described in Chapter 6 to train all our
models.
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DE-HSB EN-KA EN-KK EN-UK
Precision 87.08 44.8 49.3 67.4
Recall 76.15 44.4 42.4 74.2
F1 81.25 44.6 45.6 70.6
Threshold 1.034 1.023 1.022 1.026

Table 7.8: The evaluationmetrics on the PSM task and the respective mining thresholds.

DE-HSB CS-DE EN-KA EN-KK EN-UK
train (mono) 29.4M/0.9M 26M/29.4M 17.1M/6.6M 17.1M/7.7M 17.1M/17.3M
train (pseudo-para) 770K - 230K 169K 496K

Table 7.9: Sizes ofmonolingual corpora and the number of pseudo-parallel sentencesmined
from them.

PSEUDO-PARALLEL CORPUS CREATION

We first create a pseudo-parallel corpus as described in Chapter 5. We use the
XLM-100model fine-tuned on English-German synthetic sentence pairs as our
sentence encoder for parallel corpus mining. To measure its ability to create
representationswithahigh level ofmultilingualismfor the languagesof our in-
terest, we evaluate its performance on an auxiliary task of parallel corpusmin-
ing (PCM). For each languagepair, we randomly select 200k sentences from the
monolingual training data, mix in the parallel validation set, andmeasure the
precision and recall of the model when trying to reconstruct it.

Since XLM-100was trained on 100 languages and HSB is not one of them, we
fine-tune the model on DE and HSB sentences before using it to mine parallel
sentences for this language pair. We stop fine-tuning when the quality of the
mined corpus starts deteriorating. We determine the optimal length of fine-
tuning on the PSM task and observe that both precision and recall start slowly
decreasing after the model had seen 500k sentences.

To retrieve sentence embeddings from the trained model, we mean-pool
the encoder outputs from the fifth-to-last layer across sentence tokens (the
layer and aggregation choice explained in Section 5.2). We search the em-
bedding space as described in Equation (5.1) and Equation (5.2). We select a
threshold T that maximizes the F1 score on the PSM task. Table 7.8 lists the
precision and recall of all sentence encoders used for mining together with
the optimal mining threshold. The amount of mined parallel sentences used
for the MT training is given in Table 7.9.

UNMT PRE-TRAINING

We follow the results of the experiments in Section 7.3 when selecting the pre-
training strategy for our experiments. We pre-train onemultilingual language
model for EN-KA-KK-UK and one bilingual language model for DE-HSB using the
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Figure 7.4: Schematic illustration of the training pipeline of our models. The size of the
blocks is not proportional to training time.

MLM objective. The weights from the pre-trained languagemodels are copied
into both the encoder and the decoder of the respective bilingual NMTmodels.
The initialized NMT model for each language pair is then further pre-trained
with the denoising autoencoding loss on the two languages until convergence.
The details of the denoising task are identical to Lample et al. (2018a).

UNMT FINE-TUNING

Weexperimentwithdifferentfine-tuningstrategies forunsupervisedmachine
translation as illustrated in Figure 7.4. For each language pair, all translation
models are initializedwith the sameweights obtained in thepre-training stage
described in the previous paragraph.

OBT (baseline) models are fine-tuned solely with the iterative back-
translation loss.

PseudoPar models are fine-tuned with the standard supervised MT loss on
our pseudo-parallel corpora.

OBT+PseudoPar models are fine-tuned simultaneously with the iterative
back-translation loss on themonolingual sentences and with the standardMT
loss on the pseudo-parallel sentence pairs.

OBT+PseudoPar �→OBT models are a continuation fromdifferent checkpoints
of the OBT+PseudoPar models where the supervised MT objective is dropped
and the trainingcontinueswith iterativeback-translationonly. Weexperiment
with different checkpoints to find the optimal point to switch the training.
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DE-HSB HSB-DE EN-KA KA-EN EN-KK KK-EN EN-UK UK-EN
WMT22 best 17.9 18.0 - - - - - -
ChatGPT 6.6 - 3.9 - 5.2 - 25.8 -
OBT (baseline) 29.6 36.3 3.6 5.2 0.8 1.0 8.4 12.9
PseudoPar 11.3 12.0 1.9 4.8 1.0 3.1 4.6 8.6
OBT+PseudoPar 32.9 36.3 6.8 12.7 5.9 11.3 12.2 20.8

�→OBT 35.0 39.6 7.7 14.0 7.2 12.1 15.7 23.7

DE-HSB HSB-DE EN-KA KA-EN EN-KK KK-EN EN-UK UK-EN
de Gibert Bonet (2022) - - 12.0 - 6.4 - 20.8 -
OBT (baseline) - - 9.0 12.7 0.3 0.3 14.9 12.6
PseudoPar - - 2.1 6.8 8.0 11.6 14.6 13.1
OBT+PseudoPar - - 11.5 22.0 16.3 18.6 29.3 21.7

�→OBT - - 15.0 23.5 9.3 12.7 27.5 21.8

Table 7.10: MTperformance of our systemsmeasured by the BLEU scores on the general test
set (top) and the legal test set (bottom). Compared to theWMT22winner (Shapiro et al., 2022),

ChatGPT, and the system trained by de Gibert Bonet et al. (2022).

TRAINING DETAILS

Training configuration is identical to Section 7.3.

BENCHMARKS

The baseline for our approach is an improved model of Conneau and Lample
(2019) with an extra pre-training step on the DAE task for better performance.
We initialize thebaselinemodelwith theweightsof across-lingualMLMmodel,
furtherpre-train as adenoising autoencoder andfine-tunewith iterative back-
translation.

We benchmark our results against MT systems of de Gibert Bonet et al.
(2022) trained as a baseline for the MT4All shared task according to the
methodology of Artetxe et al. (2019b), and against Shapiro et al. (2022) who
won theWMT22 DE-HSB unsupervised task with amultilingual system that was
pre-trained according to the mBART (Liu et al., 2020) methodology and fine-
tuned on synthetic texts generated by a phrase-based system.

To challenge the relevance of unsupervised MT in the world of large lan-
guage models, we also translate our test sets by the GPT-3.5 Turbo model35
using the ChatGPT API and compare to our results.

7.4.3 RESULTS & DISCUSSION

We observed a significant improvement in translation quality over the base-
line for all translation pairs. Table 7.10 shows that the baseline OBT system
falls short of our proposed method by between 4.7 BLEU points (EN−→KK) and

35 Available at https://platform.openai.com/docs/models/gpt-3-5.
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10.7 BLEU points (UK−→EN) on the general test set. The differences on the le-
gal test set are even more pronounced: we observe an increase of up to 14.5
BLEU over the baseline (EN−→UK). Our DE−→HSB system outperforms the WMT22
winner by 17 BLEU points. When translating from English to Kazakh, our ap-
proach reaches a BLEU score of 16.3 while the baseline which solely relies on
iterative back-translation does not receive enough of a cross-lingual signal to
start learning at all. The hybrid system by de Gibert Bonet et al. (2022) which
uses additional translation information from an unsupervised phrase-based
system falls behind with a BLEU score of 6.4.

The results of translation by ChatGPT from English or German into truly
low-resource languages (HSB, KA, KK) are significantly worse than our results.
Aftermanually evaluating several translationswith a zero BLEU score, we sus-
pected that the automaticmetric puts ChatGPT’s fluent but less literal transla-
tions at a disadvantage. We calculated the COMET score which is better able to
capture themeaning similarity between texts but this hypothesis was not con-
firmed. The COMET score ranks chatGPT outputs similarly as the BLEU score
(Table 1).

Nonetheless, the EN−→UK translation by ChatGPT is better than all unsuper-
vised MT systems according to all used metrics. It must be noted that the
systems cannot be directly compared to ChatGPT since its training corpus is
larger andmight include parallel texts.

The detailed evaluation with additional metrics (COMET and chrF++) is
available inAppendixA.1. The results are generally in linewith theBLEUscore
and the combination of training on pseudo-parallel and back-translated data
performs the best under all three evaluationmetrics.

TRAINING SCHEDULES

Figure 7.5 shows training curveswith validationBLEUscores of all our DE←→HSB

systems. We see that the OBT+PseudoPar system trained simultaneously on
back-translated and pseudo-parallel data without any special schedule out-
performs thebaseline for DE−→HSBbutnot in theoppositedirection. ForHSB−→DE,
the baseline performance is surpassed as soon as we remove the pseudo-
parallel corpus from the training.

We trained several DE-HSB models starting from OBT+PseudoPar after each
completed epoch of 770k pseudo-parallel sentences. Upon examination of the
training curves in Figure 7.5, we see an immediate increase in the validation
BLEU score of∼0.9–4.9 BLEUpoints which occurredwithin the first 500 train-
ing steps after removing the pseudo-parallel corpus from the training. This
observation confirms our hypothesis that pseudo-parallel sentence pairs aid
the training in the beginning but the quality of the corpus itself poses an upper
bound on the performance of the system. However, removing the corpus too
early (after one or two epochs) leads to a lower final BLEU score. Therefore,
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Figure 7.5: The development of validation BLEU scores during the training of HSB→DE (left)
and DE→HSB (right) models. Any parallel resources were prohibited.

we recommend to keep training the OBT+PseudoPar model until convergence
and only then switch to iterative back-translation alone OBT+PseudoPar �→OBT.
We note that the differences between OBT+PseudoPar and OBT+PseudoPar �→OBT
are less pronounced whenmeasured by the COMET score (Table 1).

The flat PseudoPar training curves indicate that the quality of the pseudo-
parallel corpusalone is inadequate for traininga functionalMTsystemwithout
back-translation.

DOMAIN-SPECIFIC MT

Interestingly, removing the pseudo-parallel corpus from the training harms
the translation quality measured on the legal test sets where the best perfor-
mance for EN−→KK, KK−→EN and EN−→UK is achieved byOBT+PseudoPar. We suspect
that this is the result of the repeating terminology in the domain-specific test
sets which is better handled by the OBT+PseudoPar for some language pairs.
This is consistent with the fact that the PseudoPar system trained exclusively
on pseudo-parallel data performs quite well on the EN-KK and EN-UK legal test
set (8.0 on EN−→KK, 11.6 on KK−→EN and 14.6 on EN−→UK) while having poor results
on the general test set (1.0 on EN−→KK, 3.1 on KK−→EN and 4.6 on EN−→UK). Based
on our findings, we believe that utilizing pseudo-parallel sentences extracted
from domain-specific monolingual corpora has the potential to enhance the
training of domain-specific MT in general. However, further experiments are
out of the scope of this book.

DATA QUALITY

The sentence pairs in the pseudo-parallel corpus are far from equivalent in
meaning. As illustrated in Table 7.11, many of the sentences are paired be-
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# DE HSB Score
1 Thomas de Maizière Thomas de Maizière 1.286
2 Knut ist tot. Bayer ist tot. 1.245
3 Es ist ein harter Kampf, die Konkur-

renz ist groß.
To bě napjata hra, a konkurenca bě
wulka.

1.185

4 Der Roman hat 1200 Seiten. Knihama 300 stronow. 1.178
5 Er passt zu diesem Team wie der

Deckel auf den Topf.
Wón so k mustwu hodźi kaž wěko na
hornc.

1.161

6 Die größte misst über fünf Meter, die
kleinste wenige Millimeter.

Najkrótša měri 10 cm, najdlěša 1 me-
ter.

1.101

7 Wer Wohlstand will, braucht Wis-
senschaft.

Štóž chce něšto změnić, trjeba sylnu
wolu.

1.063

8 Morgen ist doch auch noch ein Tag! Ale to njeje hišće wšo! 1.053
7 Auch für Apple ist das iPhone wichtig. Tež aleje su jara wažne. 1.037

Table 7.11: A sample from the DE-HSBmined parallel corpus. Non-matchingwords in italics.

cause they share a named entity, a numeral (not necessarily identical), a punc-
tuation mark, or one distinctive word. Others have a similar sentence struc-
ture, they contain a similar segment or they contain words that are somehow
related, e.g. Apple/alleys (“aleje”), although the word Apple is not the fruit in
this context. On the other hand, synthetic sentences in the first training iter-
ations are also extremely noisy, and even later they contain artifacts such as
non-translated words or mistranslated named entities.

Table 7.12 shows what the back-translated and pseudo-parallel data can
look like. We observed how the back-translated version of one sentence
changes as the training progresses and witnessed several types of error, e.g.
the German word “laufend” is not translated at all in the initial iterations; the
word “April” remainsmistranslated as “March” (“měrc”) throughout the entire
training. On the other hand, the pseudo-parallel sentence matched based on
its distance from the source sentence has a similar meaning but is factually
inaccurate.

We see that themeaning ofmany of the pseudo-parallel sentence pairs sig-
nificantly differs but it is difficult to measure the quality of the entire corpus.
Wemeasure it indirectly by the increase in the BLEU score associated with in-
troducing the corpus into the UNMT training or by measuring the quality of
the sentence encoder used for creating the corpus. To be able to evaluate the
precision/recall of the sentence encoder, wehave to control the number of par-
allel sentences hidden in the input corpora. However, in real-life scenarios,
the level of comparability of two monolingual corpora is difficult to estimate.
If the monolingual corpora provided for unsupervised translation come from
a different domain and contain dissimilar sentences, the model has no good
candidates to find. This poses a challenge especially when setting the correct
mining threshold for the monolingual corpora at hand.
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SRC Ich musste mich laufend weiterbilden, und so legte ich im April 1952 die
erste und ein Jahr darauf die zweite Lehramtsprüfung ab.

REF Dyrbjach so běžnje dale kwalifikować, a tak złožich w aprylu 1952 prěnje a
lěto po tym druhe wučerske pruwowanje.

PseudoPar HańžaWinarjec-Orsesowawotpołoži prěnjewučerske pruwowanjew lěće 1949
a druhe w lěće 1952.

OBT@ 500 Dyrbjach so laufend dale kubłać, a tak legte w měrcu 1952 prěnje a lěto na to
druhe Lejnjanske pruwowanje ab.

OBT@ 3000 Dyrbjach so běžnje dale kubłać, a takwměrcu 1952 prěnju a lěto na to druhu
lektoratu serbšćiny wotpołožichmy.

OBT@ 10000 Dyrbjach soběžnje dale kubłać, a takwotpołožichwměrcu1952prěnju a lěto
na to druhu lektoratu.

Table 7.12: Asample sentence translatedby theOBTmodel after 500, 3,000 and10,000 train-
ing steps compared to the closest neighbour of such sentence from the bilingual sentence

space (PseudoPar). The mistranslated words are indicated in italics.

It is not clear which attributes of the pseudo-parallel corpus contribute the
most to the benefits of UNMT training. We believe that the benefits of training
on such noisy data are twofold: 1) the perfect matches are a valuable source
of correct supervision, and 2) the abundant less-than-perfect matches still in-
troduce a new translation signal which can help the model leave a subopti-
mal situationwhichwe often observe during back-translationwhen themodel
learns tomistranslate a word and never forgets it. An example of error pattern
induced by back-translation can be seen in Table 7.12 where the model in dif-
ferent stages of the training consistently mistranslates the word “weiterbilden”
as “kubłać” (“to pour”) when the meaning is “to further educate oneself”. On
the other hand, the word “laufend” was first mistranslated but later fixed and
at 3k training steps it was correctly translated as “běžnje”.

7.4.4 TAKEAWAYS

We have demonstrated the benefits of MT training on pseudo-parallel data in
situations when true parallel data is not available. While the pseudo-parallel
corpus alone does not reach sufficient quality for standard supervised MT
training, it works well in combination with online back-translation. We found
it optimal to train the model until convergence on both pseudo-parallel and
synthetic sentence pairs, then remove the pseudo-parallel corpus and con-
tinue training with iterative back-translation only.

We confirm our hypothesis that UNMT models are not able to fully exploit
the cross-lingual knowledge present in monolingual data. If wematch similar
sentences prior to the training using an external tool and present the model
with the matched pairs, translation quality improves.

Incorporating similar sentence pairs into the standard UNMT training in-
creases translation quality across all evaluated language pairs with an im-
provement of up to 14.5 BLEU over the baseline trained without pseudo-
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parallel data and 8.5 BLEU over a hybrid unsupervised system (EN−→UK). Fur-
thermore, we observed that in some situations (EN←→KK), the online back-
translation became trapped in a suboptimal state where no learning occurs.
Introducing pseudo-parallel data can rescue the model from this state and
restart the learning process.

After evaluating our approach on a test set in the legal domain, we believe
that training on pseudo-parallel sentences could be particularly useful for
domain-specific unsupervisedMT. If we have two in-domainmonolingual cor-
pora at hand, parallel corpus mining is an efficient strategy to retrieve trans-
lation information.

The pseudo-parallel corpus helps the training despite being noisy. We hy-
pothesize that while exact translations help themodel find correct correspon-
dences, also the noise can introduce new information and prevent the model
frommemorizing some of the artifacts of back-translated sentences. We leave
it up to future research to evaluatewhether a cleaner but smaller corpuswould
bring even larger gains.

In the LLM era, these findings are interesting for two reasons:
1. The alignment of specific language representations in a multilingually

trained model is a feature also observed in LLMs with translation capa-
bilities. Since the seedmodelweuse (XLM) is trained ondata that ismore
than 1,00036 times smaller than that of current LLMs, it offers a setting
particularly useful for rigorous analysis of this phenomenon. What are
the critical conditions for this alignment to emerge? The improvement
we observe when adding a small amount of parallel data (even synthetic,
in our case) can be compared to the multilingual alignment witnessed
in LLMs, whose encompassing training data include parallel texts and
translation examples.

2. The technique of fine-tuning LLMs for translation has been studied, too
(Zhu et al., 2024a). In our smaller setting, we can study the effective-
ness of this easier. What is the minimum number of sentence pairs for a
measurably better alignment? Does the effect of also aligning other lan-
guages apply across all languages equally strongly? What are the upper
bounds of this alignment? We anticipate that the results observed in this
smaller setting would apply to LLMs, too.

In the following section, we stress-test our approach in the conditions of
truly low-resource languages where monolingual corpora have a limited size
and cover different domains.
36 The XLM model was trained on Wikipedia which consisted of ∼3.3 billion words as of January 2019

when the XLM model was published (https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia). The
most recent Llama3modelwas trainedon∼15 trillion tokens (https://ai.meta.com/blog/meta-llama-3/).
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7.5 LIMITATIONS OF UNSUPERVISEDMT

In the previous sections, we established that if parallel texts are not available,
MT models can learn using unsupervised techniques from monolingual data
only. We tested on four language pairs exhibiting rich linguistic variety, out
of which DE-HSB, EN-KA and EN-KK are considered low-resource according to the
definition given in Chapter 2.

While the results are promising, the absolute BLEU scores for the more re-
mote language pairs are still fairly low. It has been argued (Marchisio et al.,
2020), that unsupervised techniques fail when

• languages are linguistically dissimilar;
• or there is a domainmismatch between the training corpora;
• or there is not enoughmonolingual sentences (less than 1M) for training.
In the previous section, we showed that using pseudo-parallel data for

training in combinationwith the right pre-training strategy, we can train func-
tional UMT systems even in the scenarios above. In particular, Georgian and
Kazakh are linguistically far fromEnglish, and theUpper Sorbian training cor-
pus is only 0.9M sentences.

Hereweperformseveral experiments in evenmore adverse conditions and
train MT models for translation between English and four low-resource Indic
languages: Assamese (AS),Khasi (KHA),Mizo (MZ), andManipuri (MNI). All of these
languages are linguistically dissimilar from English, the amount of monolin-
gual data is limited (only 183k sentences in Khasi), and the corpora exhibit a
domain mismatch. We employ our approach of training on pseudo-parallel
corpora to determine whether it can help in situations where other unsuper-
vised techniques fail. The experiments from this section were carried out as
part of the Indic MT shared task37 of WMT23 and the system description will
be published in the workshop proceedings.

7.5.1 DATA

We use the data provided for the WMT23 shared task of Indic MT. The Indic
training data cover a combination of the news domain and the religious do-
main. In addition to the provided data, participants were allowed to use any
monolingual texts and any pre-trained models trained on monolingual texts.
We used 33M English sentences from NewsCrawl2022 and relied on the pre-
trainedmodel fromChapter 5 for parallel corpusmining. The summary of the
data is in Table 7.13.

We trained a BPE model on the concatenation of all Indic corpora and a
downsampled Englih corpus. The BPE vocabulary size is 52k. During pre-
processing, we first tokenized the texts using the Moses tokenizer which cre-
ated a problem with the Bengali-Assamese script as it decomposed several

37 Available at http://www2.statmt.org/wmt23/indic-mt-task.html.
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AS KHA MNI MZ EN
train (mono) 2.6M 183k 2.1M 1.9M 33M
train (para) 50k 24k 50k 20k -
train (pseudo-para) 32k 5k 95k 66k -
dev 2k 1k 1k 1.5k -
test 2k 1k 1k 2k -

Table 7.13: The number of sentences in the training, dev and test sets used in the Indic MT
shared task.

compound Unicode characters which had an impact on the segmentation of
texts using this script (AS, MNI). The decomposed accents form a separate BPE
unit which lead to a high segmentation of the Assamese and Manipuri texts.
During post-processing we managed to compose the segmented text by run-
ning a reverse substitution on top of the standard detokenization. The unnec-
essary step of Moses tokenization likely cost us some final translation perfor-
mance due to the suboptimal BPE segmentation.

Weobtain ourpseudo-parallel data using twoversions of the Indic sentence
encoder we described in Section 5.4.4. The XLM-100 (Indic) model was fine-
tuned on monolingual data in EN, AS, KHA, MNI, MZ. The XLM-100 (Indic+EN-DE synth)
modelwas further fine-tunedusing EN-DE synthetic parallel data. In Table 7.14,
we report the performance of the two encoders on the task of parallel corpus
mining where themodel is evaluated on finding parallel sentences in two cor-
pora of 202k sentences built bymixing the development set of 2k parallel sen-
tences into a randomset of 200kmonolingual sentences from the training cor-
pus.

7.5.2 MODEL & TRAINING

We pre-train all our models using the most successful pre-training strategy
from Section 7.3 which is MLM followed by DAE. During translation training,
we use the combination of OBT andMT on amined parallel corpus (PseudoPar)
as described in Section 7.4.

TRAINING DETAILS

The training configuration is identical to Section 7.3.

7.5.3 RESULTS & DISCUSSION

Theunsupervised results are reported inTable7.15. Weobserve that theBLEU
scores for EN-AS and EN-MNI are less than 1 BLEU using the baseline unsuper-
vised approach,meaning that themodels learn almost zero translation knowl-
edge. Theperformance canbe significantly improvedby addingnoisy pseudo-
parallel sentences, butBLEUstill remainsbelow3points. Uponcloser analysis
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XLM-100 (Indic) XLM-100 (Indic+EN-DE synth)
EN-AS EN-KHA EN-MNI EN-MZ EN-AS EN-KHA EN-MNI EN-MZ

Precision 35.03 9.67 7.92 22.54 58.08 28.64 13.49 38.56
Recall 18.55 10.50 5.70 18.00 39.70 23.60 12.10 33.80
F1 Score 24.26 10.07 6.63 20.01 47.16 25.88 12.76 36.02
Threshold 1.023 1.025 1.022 1.022 1.022 1.027 1.022 1.022

Table 7.14: Precision, recall and F1 score of the XLM-100 (Indic) and
XLM-100 (Indic + EN-DE synth) models on the parallel corpus mining task. The thresholds
were optimized for the highest F1 score and used for mining training sentences for our MT

models.

System Sentence Encoder EN-AS AS-EN EN-MNI MNI-EN
OBT (baseline) - 0.2 0.3 0.1 0.1
OBT+PseudoPar XLM-100 (Indic) 1.0 1.4 0.2 0.3
OBT+PseudoPar XLM-100 (Indic+EN-DE synth) 1.4 1.5 2.8 0.7

System Sentence Encoder EN-MZ MZ-EN EN-KHA KHA-EN
OBT (baseline) - 2.0 0.8 7.7 2.3
OBT+PseudoPar XLM-100 (Indic) 4.1 2.3 7.4 2.0
OBT+PseudoPar XLM-100 (Indic+EN-DE synth) 4.8 2.5 12.6 4.6

Table 7.15: BLEU score of Indic unsupervised MT systems on the WMT23 test set. COMET
and chrF++ results are reported in the Appendix.

of the best translation candidates, we see that such low scores correspond to
an average of 2 word matches per reference-candidate sentence pair. We re-
view the translations and observe that the models generate fluent sentences
within the same topic as the source sentence but their meaning is completely
off. This finding points in the direction that unsupervised techniques could be
useful for domain adaptationor style transfer even inhigh resource languages.

There are several possible explanations for such subpar results. Both AS

and MNI share a non-Latin script. We experienced problems with the Moses
tokenization where words containing compound Unicode characters were of-
ten incorrectly split or even segmented at the character level. The amount of
monolingual data (∼2M) is lower than we had in our previous experiments.
Both languages are linguistically distant from English (which, however, also
applies to KA and KK where the unsupervisedmethods work). And finally, Indic
texts contain segments from religious texts whereas English training data is
from the news domain.

The results for EN-KHA and EN-MZ are slightly more promising. The effect
of training on pseudo-parallel sentences is significant for both language pairs
and amounts to∼5 BLEUpoints. However, we see that themodels quickly con-
verge to these values, marking a distinct training trajectory compared to what
we witnessed in our experiments from Section 7.4. Moreover, we see very low
results in the translationdirection fromthe Indic languages intoEnglishwhich
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contrasts with our prior experiments where translating into English was less
problematic than the reverse direction.

The impact of using the PseudoPar corpus forUMT training across evaluated
language pairs does not fully correspond to the per-language performance of
the sentence encoder reported in Table 7.14. On one hand, the mining preci-
sion is significantlyhigher for the improvedencoderXLM-100 (Indic+EN-DE synth)
and we observe a corresponding increase in translation quality when using
pseudo-parallel sentences retrieved by this model. On the other hand, the
strongest impact on translation quality is observed for EN-KHA where the en-
coder precision is only 29%. Moreover, the encoder precision for EN-AS is
58% but despite this high value, the unsupervised MT training fails to start.
For comparison, the precision for EN-KA and EN-KK was 45% and 49% (Ta-
ble 7.8), respectively, and the models were able to extract significant transla-
tionknowledge from the retrievedpseudo-parallel data. Tohave a clearer view
of what the data looks like, we carried out amanual evaluation of EN-KK and EN-

KA pseudo-parallel corpora (see Figure 8.1 in Discussion) and found that the
structure of the two corpora is relatively similar. However, given the smaller
ASmonolingual corpus, the AS-EN pseudo-parallel corpushas only 33k sentence
pairs. Moreover, the AS-EN data suffers a domainmismatch since the AS corpus
contains a significant amount of religious texts. These challenges, together
with the linguistic dissimilarity and the problematic Assamese script, might
be the reasons why the model fails to start learning.

Surprisingly, despite the low amount of KHA training data (183k sentences),
the KHA-EN MT system was able to reach a reasonable level of translation qual-
ity without seeing any authentic KHA-EN translations. We will see in the next
section that the BLEU score is close to the semi-supervised result.

7.5.4 TAKEAWAYS

We confirm that in the situation of training data domain mismatch, linguis-
tic dissimilarity, different scripts (AS, MNI) and limited amounts ofmonolingual
data, unsupervised MT models struggle. Without PseudoPar data in the train-
ing mix, the majority of unsupervised models we experimented with did not
even start learning. Upon the introduction of PseudoPar texts, the BLEU score
increases but remains low.

Given the failure of the unsupervised MT approach, we can turn to LLMs
for an alternative solution. Although translation into truly low-resource lan-
guages is a challenge even for modern LLMs (Zhu et al., 2024b), recent work
by Guo et al. (2024) or Tanzer et al. (2024) yields interesting results. These ex-
periments demonstrate that it is possible to teach an LLMs to translate into
a truly low-resource language (which was absent from training data) using a
textbook provided in the model’s instructions (prompt), yielding satisfactory
results. However, the exploration is far from finished, because Aycock et al.
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(2024) document that most of the translation gains stem from the provided
parallel examples andfindno evidence that the LLMsmakeuse of the provided
grammatical explanations.

In the last result section,wewill loosen the restrictionofnoparallel training
data and explore the model MT performance when trained on small parallel
datasets.

7.6 PSEUDO-PARALLEL DATA IN SEMI-SUPERVISEDMT

In the following section, we will depart from the constraints posed by the un-
supervised MT scenario and study low-resource translation between English
and the four Indic languages introduced in the previous section with limited
amounts of parallel data available. We will be incrementally adding parallel
sentences into the unsupervised training and create semi-supervised systems
to determine:

• how translation quality increases as we addmore parallel sentences into
the training;

• whether incorporating pseudo-parallel data into the training helps in
semi-supervised scenarios;

• how many authentic parallel sentence pairs are required for the model
to not see any further benefit in the noisy pseudo-parallel data.

In Section 7.4, we established that pseudo-parallel data play an important
role in unsupervised training. In Section 7.5, we pointed at the limitations of
unsupervised MT techniques in authentically low-resource scenarios. In the
experiments presented in this section, we examine whether pseudo-parallel
data canbeuseful in situationswhere small amounts of authentic parallel data
are available.

7.6.1 DATA

In addition to the data from Section 7.5 listed in Section 7.5, small amounts of
parallel training data (AuthPar) provided for the WMT23 shared task was used
(50k sentencepairs for EN-AS, 24k sentencepairs for en-KHA, 22k sentencepairs
for EN-MNI and 50k sentence pairs for EN-MZ). Pseudo-parallel corpora (Pseu-
doPar) used in our semi-supervised experiments are identical to those from
Section 7.5. The number of retrieved pseudo-parallel sentence pairs is indi-
cated in Table 7.13.

7.6.2 MODEL & TRAINING

For our WMT23 submission to the shared task on Indic MT, we trained MT
models in a semi-supervised manner using available parallel data as well as
unsupervised techniques. We experiment with the same language pairs as
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Figure 7.6: Schematic illustration of the training pipeline of our models. The size of the
blocks is not proportional to training time.

in Section 7.5: English-Assamese (EN-AS), English-Manipuri (EN-MNI), English-
Mizo (EN-MZ) and English-Khasi (EN-KHA).

This shared task was proposed as a realistic scenario where for each Indic
language, the participants have access to several thousand parallel sentences
paired with English, up to 2.6M additional unaligned sentences in each Indic
language, and an unlimited amount of English texts. In addition, using any
model pre-trained onmonolingual texts was allowed.

PRE-TRAINING ONMONOLINGUAL TEXTS

All our systems are pre-trained on theMLMandDAE tasks as described in Sec-
tion 7.3. A schematic illustration of the training pipeline is in Figure 7.6.

SEMI-SUPERVISEDMT TRAINING

In the semi-supervised setup, we fine-tune a bidirectional model for each lan-
guage pair with the standard supervised MT objective (first on the pseudo-
parallel corpus PseudoPar and then on the authentic parallel corpusAuthPar) as
well as theOBT objective (on themonolingual corpus). We compare the results
of the semi-supervised models to completely unsupervised models trained
only with OBT and PseudoPar data to measure the effect of limited amounts
of parallel texts. We experiment with gradually adding parallel data into the
training and evaluate the performance of a model trained on 1k, 2k, 5k, 10k
and 25k parallel sentences. Furthermore, we train models with and without
the PseudoPar pre-training stage and we evaluate the impact of using pseudo-
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EN-AS EN-KHA EN-MNI EN-MZ
AuthPar+OBT (semi-sup) 14.1 16.6 29.5 31.2
PseudoPar+AuthPar+OBT (semi-sup) 13.3 15.9 29.8 30.8
OBT (unsup) 0.2 7.7 0.1 2.0
OBT+PseudoPar�→OBT (unsup) 1.4 12.6 2.8 4.8

Table 7.16: BLEU score of EN-AS, EN-KHA, EN-MNI and EN-MZ semi-supervisedMT systems on
the WMT23 test set.

parallel data on thefinal translation quality as the amount of authentic parallel
texts increases.

7.6.3 RESULTS & DISCUSSION

SHARED TASK RESULTS

Regarding the semi-supervised shared task results, our EN→MNI systemranked
second out of 14 participants. Our EN→MZ system ranked fourth out of 11 par-
ticipants. The remaining systems finished on the 5th-7th places. The winning
system for all language directions was a system called TRANSSION-MT which
outperformed other systems with almost double the BLEU score of the second
best candidate. Since the participants were allowed to use unlimited amounts
of monolingual data in any languages, there might be great discrepancies be-
tween the amounts ofmonolingual data and auxiliary languages used by other
participants. Furthermore, the participants were allowed to use any available
models pre-trained onmonolingual data whichmakes it difficult to guarantee
that usedmodels do not suffer from test set contamination.

PSEUDO-PARALLEL SENTENCES IN SEMI-SUPERVISED TRAINING

Outside of the scope of the shared task, we were interested in the following
phenomena which wemeasured in our experiments:

• the gap between unsupervised and semi-supervised translation sys-
tems;

• the impact of training with pseudo-parallel sentence pairs on the final
translation quality;

• the development of translation quality in relation to the number of au-
thentic parallel sentences used during training.

We trained unsupervised MT systems as described in Section 7.5. Ta-
ble 7.16 shows that the unsupervised systems reach less than 5 BLEU which
is not a sufficient quality for practical use. The large gap between the unsu-
pervised and supervised systems is most likely the consequence of linguistic
dissimilarity and the domain mismatch between English and Indic data. Our
conclusions support the claims of other researchers (Marchisio et al., 2020;
Vulić et al., 2019) that unsupervisedMTmodels often fail in truly low-resource
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Figure 7.7: Relationship between the translation quality and the number of authentic paral-
lel sentences used for training. Dashed lines represent systems trained on pseudo-parallel
(PseudoPar) sentence pairs in addition to authentic (AuthPar) and back-translated (OBT) sen-

tence pairs.

scenarios where it is not possible to get enough clean and domain-balanced
monolingual training data.

Furthermore, Table 7.16 shows that data augmentation with pseudo-
parallel sentences has zero or even a negative impact on the performance of
our semi-supervised systems. For the unsupervised systems, on the other
hand, it increases the BLEU score by up to 3.6 BLEU points.

Our previous experiments showed that the pseudo-parallel data in EN-AS
and EN-MZ have sufficient quality to aid translation training. Therefore, we
trained several other systems, gradually adding authentic parallel sentences
to measure the threshold where the positive impact of pseudo-parallel sen-
tences disappears. Figure 7.7 illustrates the relationship between translation
quality and the size of the authentic parallel corpus and reveals that when
we have between 10k and 25k parallel-sentences, the unsupervised data aug-
mentation techniqueof addingpseudo-parallel sentencepairs isnotbeneficial
anymore.

7.6.4 TAKEAWAYS

We trained semi-supervised and unsupervised systems for translation be-
tween English and Indic languages and we conclude that the translation qual-
ity rises rapidly by adding small amounts of parallel data into the training. We
use back-translated and pseudo-parallel sentences to prevent themodel from
over-fitting to the small authentic parallel corpus and reached favourable re-
sults. We showed that for translation from English into Assamese and Mizo,
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data augmentationwith noisy pseudo-parallel data is beneficial whenwe have
less than 10k authentic sentence pairs.

In situations where unsupervised techniques fail, adding a thousand au-
thentic translations into the training can significantly improve the results.
With 50k parallel sentences and online back-translation, the models reach a
solid translation quality.

These conclusions indicate a path for enhancing low-resource translation
capabilities also in modern LLMs, suggesting that integrating small amounts
of parallel data into training significantly improves translation quality com-
pared to a fully unsupervised system that relies solely on internal alignment
of meaning representations.



8.

DISCUSSION
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We performed a number of experiments across several tasks and various lan-
guage pairs. In this chapter, we summarize the observations we have made,
and we list several challenges we have faced.

OBSERVATION 1: SENTENCE REPRESENTATIONS EXTRACTED FROM
MULTILINGUAL TRANSFORMER LANGUAGE MODELS CAN BE USED FOR
PARALLEL CORPUSMINING.

Although several authors (Feng et al., 2022; Reimers and Gurevych, 2020)
claim that representations fromTransformer languagemodels cannot beused
for sentence retrieval without fine-tuning with a sentence-level objective, we
show that under certain conditions, averaging per-token representations suf-
fices to produce meaningful sentence embeddings. We perform light fine-
tuning of the pre-trained XLM-100 model on a translation masked language
modelling (TLM) task. Using this technique, we observe an improvement of
up to 22 points in the F1 on score on a parallel corpusmining task. We use re-
trieved (pseudo-parallel) sentences for training an unsupervised MT system
and report a significant boost in translation quality upon the introduction of
the pseudo-parallel data into the training.

Utilizing sentence embeddings from newer models like LaBSE (Feng et al.,
2022), distilled Sentence-BERT (Reimers and Gurevych, 2020), or distilled
LASER (Heffernan et al., 2022), which leverage parallel data to enhance the
alignment of cross-lingual representations for equivalent sentences, would
yield improved results. However, adopting these models would require de-
parting from the constraint of a fully unsupervised scenario. In this work, we
explore the highest translation quality attainable by training on monolingual
data only and we strive to move towards that theoretical limit. Therefore, us-
ing small amounts of parallel data is outside of the scope of this book (except
our small experiment in Section 7.6). In practical applications involving low-
resource languages, it would be advisable to use any parallel data available.
It has been shown that several thousand parallel sentences suffice to distill
the knowledge of a heavily supervisedmodel (e.g. LASER or MuSE (Yang et al.,
2020)) into a new model which specializes in a low-resource language (Costa-
jussà et al., 2022).

OBSERVATION 2: THE BENEFITS OF LIGHT FINE-TUNING OF THE XLM
MODEL EXTEND TOUNRELATED LANGUAGE PAIRS.

In Chapter 5, we showed that fine-tuning the XLM-100 model with a TLM ob-
jective improves its sentence retrieval capability regardless of the languages
used during fine-tuning. For instance, fine-tuning on Czech-German syn-
thetic sentencepairswithmasked tokens improves the results on all evaluated
language pairs (e.g. English-Afrikaans, English-Kazakh, English-Georgian).
Similarly, fine-tuning the XLM-100 (Indic) model on either Czech-German or
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Figure 8.1: Manual evaluation of 100 sentence from English-Kazakh and English-Assamese
pseudo-parallel corpora. The evaluationwas carried out in English based on the translations

from Google Translate.

English-Germansentencepairs further identically improves the results for the
Indic language pairs.

The reasons for such a cross-lingual, or even cross-task, improvement are
not quite clear and definitely deserve future exploration.

OBSERVATION 3: UNSUPERVISED MT MODELS BENEFIT FROM TRAIN-
ING ONNOISY PSEUDO-PARALLEL SENTENCES.

Wehave shown throughout this book that pseudo-parallel sentences aid unsu-
pervised MT training despite being noisy. In order to better assess how noisy
the data is, we carried out a manual evaluation on a sample of 100 sentences
from the English-Kazakh and English-Assamese parallel corpora. The evalu-
ators were asked to assign a category to each pseudo-parallel sentence pair to
assess its similarity.

The results in Figure 8.1 show that only a small fraction of sentence pairs
are (almost) perfect translation equivalents. This is also the consequence of
the fact that the monolingual corpora of limited size rarely include sentences
which are fully equivalent, especially the longer ones. Many sentences are la-
beledas “very similarwithacritical translationerror”where the twosentences
are virtually identical, but they include a different name or number, which is
critical as far as translation quality is concerned. Amajority of sentence pairs
was matched because they include several equivalent words. A small portion
of sentences was matched solely based on their sentence structure (e.g. the
same punctuation or sentence length) with no semantic similarity.
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Seeing the quality of the data and the low number of equivalent sentence
pairs, it might seem unexpected, but all our findings indicate that training
on such noisy parallel data is still preferable to using no parallel data at all.
However, in severely adverse conditions of linguistic dissimilarity, technical
problems with correct script processing, and domain mismatch in the train-
ing data (English-Assamese, English-Manipuri), we were not able to make un-
supervised MT work even with the help of pseudo-parallel data.

Surprisingly, the structure of the two monolingual corpora in Figure 8.1
is very similar in terms of the quality we evaluated. We saw in Section 7.4
and Section 7.5 that while the English-Kazakh corpus significantly helps the
training, English-Assamese UNMT systems quickly converge to a low score.
An important factor here is the size of monolingual corpora. Out of 2.6M
Assamese sentences and 32M English sentences, we were only able to mine
33k pseudo/parallel sentences. In the case of English-Kazakh translation, we
found169k translationpairs out of 8MKazakh sentences and17MEnglish sen-
tences. There’s a possibility that employing large-scale mining in an English
corpus ten times the current size could yield improved results for English-
Assamese translation as well.

OBSERVATION 4: UNSUPERVISED MT SYSTEMS STRUGGLE WITH
NAMED ENTITIES.

Translating names, especially proper nouns, is always a challenge as they
might not have direct equivalents in the target language. They can be cultur-
ally specific or unique, making it challenging for the system to find suitable
translations without context.

In unsupervised MT, the problem is much more severe. Even the MT sys-
tems that reach high BLEU scores very often mistranslate names and num-
bers, and this deficiency significantly hampers their practical use. This prob-
lem was discussed in more detail in Section 7.2. The reason is that the vector
representations of names and numbers often lie close to each other in the em-
bedding space, as illustrated in Figure 8.2 Since the initial translation signal
for both UNMT and UPBMT systems comes from such shared latent space, the
problem is introduced already in the beginning, and subsequent training by
back-translation, unfortunately, has no way to block suchmistranslations and
thuseffectively ensures that theproblempersists. The introductionofpseudo-
parallel data into the training can partially alleviate the problem but also in-
troduces new mistranslations of named entities which were present in the
pseudo-parallel corpus. We saw in Section 7.4 that sentences in the pseudo-
parallel corpus were often matched because they included a name or a num-
ber, but not necessarily an equivalent one, or because theymatched inmost of
the message except for a name or a number.
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Figure 8.2: PCA visualisation of Czech and German cross-lingual word embedding spaces
aligned as described in Chapter 6. We illustrate the nearest neighbours of thewords “12” and
“pondělí” (“Monday”) and see that different numbers and temporal words (e.g. today, yesterday,

autumn, August, Saturday etc.) cluster together.

Source: Kvapilíková (2020)

CHALLENGE 1: DATA QUALITY

Data cleaning is a challenge in truly low-resource conditions, aswe cannot rely
on common solutions and tools that we take for granted for high resource lan-
guages. We faced this when processing the Mizo monolingual corpus which
was infested with a great number of sentences in other languages. In normal
conditions, we would have used a language tagger to clean the data but none
of the common pre-trained language taggers (fasttext-lid, langdetect, langid,
cld2) supports the Mizo language. We realized the extent of the problem only
when searching for equivalent sentences in the Mizo and English corpora and
finding a great number of English sentences which were hidden in the Mizo
corpus. Re-training the model with a cleaned corpus would most likely in-
crease the translationquality, especiallywhenusingmined-parallel sentences
for training. Many of the mined sentence pairs were identical English sen-
tences, others were different sentences which were matched based on the
identical English words they included. Both of these likely harmed the train-
ing, teaching the model to copy English words from the source to the target.
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CHALLENGE 2: WORKINGWITH LESS COMMON SCRIPTS

Low-resource languages, especially those that have received limited attention
in terms of linguistic resources and technological development, often use dif-
ferent character sets or scripts compared to high-resource languages. Many of
the languages we experimented with (Assamese, Manipuri, Georgian, Inukti-
tut) use a non-Latin and non-Cyrillic alphabets. Handling different character
sets canbea challenge. We faced it during text pre-processing of languagesus-
ing the Bengali-Assamese script (Assamese andManipuri) where tokenization
and subword segmentation lead to a decomposition of several Unicode char-
acters. It resulted in the isolation of accents into separate characters and too
granular segmentation. We only noticed this after the end of the training and
applied a reverse operation to reconstruct the texts. Since unsupervised train-
ing relies on the geometrical properties of embedding spaces, the suboptimal
segmentation could have significantly harmed the performance.

Moreover, new alphabets can be challenging for pre-trainedmodels. Fortu-
nately, the XLM-100 model we worked with had individual characters of these
alphabets in its vocabulary but the texts were split at the character-level. This
may hinder the cross-lingual transfer within the model that we rely on dur-
ing fine-tuning. Moreover, many sentences exceeded the maximum number
of tokens allowed permodel input due to the excessive granularity of segmen-
tation.

CHALLENGE 3: DOMAINMISMATCH IN TRAINING CORPORA

UnsupervisedMT is based on the underlying idea that the concepts described
by a language are grounded in the real world, regardless of the language we
use. While this assumptionmight be true in general, it is not applicable in sit-
uations when the texts we have available for each language exhibit a domain
mismatch. We cannot assume that texts from movie subtitles or sports news
describe the sameword as the Bible. We faced precisely this issue when creat-
ing our unsupervised systems in Indic languages. In low-resource scenarios,
the problem is exacerbated by the fact that we cannot use off-the-shelf tools
for domain classification and we do not have training data to create such tools
on our own. Moreover, for languages in different scripts with little English in-
fluence, we cannot even roughly check what kind of data we are dealing with
and we cannot use any commercial MT system to gain an understanding prior
to our own training (e.g. Khasi and Mizo are not supported by neither Google
Translate nor ChatGPT; Manipuri is supported by Google Translate with very
poor results). On the other hand, this shows the importance of MT research
for these languages which are completely excluded from existing NLP tech-
nologies.
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CHALLENGE 4: LACK OF LANGUAGE EXPERTS AND ANNOTATORS

Obtaining access to language experts and annotators for low-resource lan-
guages can be challenging. These languages often have smaller speaker pop-
ulations, limited digital presence, and fewer resources dedicated to linguis-
tic research or technological development. As a result, finding individuals
proficient in these languages for tasks like annotation, translation, or linguis-
tic analysis can be more difficult compared to high-resource languages. This
scarcity of experts and annotators can significantly impact the progress of
language-related projects for these languages. We intended to conduct aman-
ual evaluation of the translation output and pseudo-parallel corpora, but we
did not reach enough speakers of Khasi, Mizo, and Manipuri to proceed with
the plan.
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The research aim behind this book was to determine themost effective way of
exploiting a cross-lingual signal frommonolingual data. Currentmulti-lingual
large language models seem to achieve this goal across more than two lan-
guages implicitly, but this emergent capacity is still far from being explained.
Possibly, LLMs see enough of translation equivalents in their vast training
data, but this has not been sufficiently explored.38

We hope that our book on learning to translate a particular language pair in
a particular direction still contributes to the pool of ideas that can be used to
explain howTransformer languagemodels obtain the ability to relatemeaning
across languages and under which conditions, this ability is out of their reach
(e.g. very low training data for a language of interest).

In the narrow domain of unsupervised inMT, we conclude that themost ef-
fective approach does not lie in determining the single best strategy but rather
using a combination of methods. Unsupervised MT comprises a set of tech-
niques that rely on monolingual texts and we contribute by extending this set
with a modified pre-training strategy and a novel fully unsupervised way of
training data creation. In Chapter 4, we introduced a taxonomy of unsuper-
vised approaches and now we can place our methods on the map. We focused
onbothmodel-centric anddata-centric approaches aswe investigated the role
of pre-training andmodel initialization (model-centric) and we experimented
with different automaticmethods of obtainingparallel data andusing them for
MT training (data-centric).

Unsupervised MT models relying only on model pre-training and back-
translation often fail in truly low-resource conditions. We showed that they
are not able to fully exploit the translation signal present in monolingual data
and they benefit from explicit supervision extracted from the same data us-
ing an external model. We proposed a training strategy where we included
pseudo-parallel data mined from monolingual corpora in unsupervised MT
training and reached a significant improvement across all evaluated language
pairs. Although pseudo-parallel texts obtained in a completely unsupervised
way are very noisy with a majority of sentence pairs being similar rather than
equivalent, they offer the model a source of external translation knowledge
that complements the training on synthetic back-translated examples. For the
broader area of LLMs, this observation may suggest that, e.g. some forms of
self-training, could greatly improve their multilingual abilities.

Analternativewayof introducingadifferent sourceof a translationsignal to
unsupervised neural MTmodels is by training on synthetic parallel sentences
generatedbyphrase-basedmodels. We showed that training ona combination
of synthetic sentences produced by different types of MT systems is superior

38 One exception is the study of Briakou et al. (2023b) who were able to remove sentence-level parallel ex-
amples and still saw a good translation ability in PaLM (Chowdhery et al., 2022), possibly due to parallel
sub-sentence examples.
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to training only on back-translated sentences generated by the neural model
during training.

In our researchwork, we created twokinds of unsupervisedmodels: (1) un-
supervised MT systems which create their own cross-lingual representations
and use them for generating translations, and (2) multilingual sentence en-
coders which are capable of selecting equivalent or similar sentences from a
pool of monolingual sentences. We showed that the two kinds of models can
benefit fromeachother: unsupervisedMTsystems trained onpseudo-parallel
data improve in translation quality, and multilingual encoders fine-tuned on
synthetic parallel data improve their translation matching accuracy.

For the practical applications of low-resource MT translation, we see the
highest potential in large-scale parallel corpus mining and subsequent MT
trainingonminedparallel corpora. Ifwe relax the strict requirementofnopar-
allel data, it is possible to employ multilingual sentence encoders trained on
large parallel corpora in high-resource languages. Using very small amounts
of parallel texts coupled with English then suffices for knowledge distillation
to new languages. If not already available, collecting such small data could be
themost effectiveway to increaseMTquality for a particular low-resource lan-
guage. Furthermore, unsupervised pre-training (e.g. masked-language mod-
elling, denoising autoencoding) or transfer learning from related language
pairs are effectivemethods to increase translation quality of low-resourceMT.

At the beginning of this book, we askedwhat the theoretical limit of transla-
tion based on monolingual texts is. While we cannot answer this question be-
yond the methods we have experimented with, we believe the limit lies in the
size and the domain overlap of monolingual data available. In high-resource
conditions with large amounts of monolingual data, domain-balanced cor-
pora, and ideally also linguistic similarity, the performance gap betweenmod-
els trained in a supervised and an unsupervised way is narrow. We witnessed
this when training our Czech-German MT systems. However, in such situa-
tions, unsupervised techniques are effectively not necessary because parallel
resources typically exist, too.

When experimenting with translation between German and Upper Sor-
bian, a truly low resource language pair, the gap between semi-supervised
approaches relying on limited amounts of parallel data and unsupervised ap-
proaches was wider. However, we were able to significantly reduce it by us-
ing our modified pre-training strategy and pseudo-parallel data. Similar re-
sults were reached when translating between English and Kazakh, Georgian
and Ukrainian using monolingual data only.

Several authors pointed out the limitations of unsupervised approaches
rooted in the underlying assumptions of unsupervisedMT. Namely, if the rep-
resentation spaces of two languages do not exhibit a sufficient level of iso-
morphism, unsupervised translation between them is not possible. While
our method of training on pseudo-parallel data helped in situations where
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the baseline unsupervised approach failed, the limitation of our research re-
mains the fact that in adverse conditions which are often present in truly low-
resource scenarios, the translation quality is inadequate. We experienced
this when training models for translation between English and four Indic lan-
guages: Assamese, Khasi, Manipuri and Mizo.

We see two possible directions of future research in continuation to this
work. First of all, exploring the representations hidden in pre-trained multi-
lingual models and improving their cross-lingual alignment is a very relevant
topic especially in the era of large languagemodels. We showed a simple fine-
tuning strategy whichmakes the representationsmore language-agnostic but
the source of that improvement deserves more investigation. Secondly, we
believe that the techniques from unsupervised MT are applicable in high-
resource scenarios where they can serve for domain adaptation or style trans-
fer. Exploring how to effectively use them for that purpose constitutes a very
interesting research avenue.
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APPENDIX

A.1 ADDITIONAL EVALUATION (COMET AND CHRF++)

DE-HSB CS-DE EN-KA EN-KK EN-UK
WMT22 best 45.4 43.8 - - - - - -
ChatGPT 30.7 - 28.2 - 30.9 - 52.4 -
OBT (baseline) 50.9 55.5 27.4 28.8 2.4 2.9 31.3 37.4
PseudoPar 34.8 37.9 23.1 26.6 17.5 22.9 23.3 32.1
OBT+PseudoPar 53.3 56.5 35.5 39.4 31.4 36.4 35.9 45.7

�→OBT 56.1 59.3 37.8 40.9 33.6 37.3 41.2 49.1

DE-HSB CS-DE EN-KA EN-KK EN-UK
de Gibert Bonet (2022) - - n/a - n/a - n/a -
OBT (baseline) - - 32.2 33.8 1.9 2.1 43.2 37.5
PseudoPar - - 22.6 27.0 27.3 32.1 39.2 35.3
OBT+PseudoPar - - 38.2 25.6 41.9 41.1 55.9 47.5

�→OBT - - 43.3 47.0 39.1 38.4 54.7 48.0

Table 1: MT performance of our systems measured by chrF++ scores on the general test set
(top) and the legal test set (bottom), compared to the WMT22 winner (Shapiro et al., 2022)
and ChatGPT. The score could not be computed for the system trained by de Gibert Bonet

et al. (2022) as we do not have access to their translations.
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DE-HSB CS-DE EN-KA EN-KK EN-UK
WMT22 best 0.58 0.52 - - - - - -
ChatGPT 0.55 - 0.56 - 0.63 - 0.89 -
OBT (baseline) 0.59 0.68 0.55 0.55 0.40 0.57 0.60 0.60
PseudoPar 0.56 0.56 0.62 0.60 0.62 0.59 0.63 0.62
OBT+PseudoPar 0.62 0.71 0.70 0.70 0.71 0.67 0.71 0.72

�→OBT 0.63 0.72 0.71 0.72 0.71 0.68 0.73 0.74
DE-HSB CS-DE EN-KA EN-KK EN-UK

de Gibert Bonet (2022) - - n/a - n/a - n/a -
OBT (baseline) - - 0.58 0.57 0.45 0.65 0.76 0.65
PseudoPar - - 0.59 0.58 0.79 0.71 0.77 0.63
OBT+PseudoPar - - 0.69 0.69 0.86 0.74 0.85 0.72

�→OBT - - 0.71 0.70 0.85 0.73 0.84 0.75

Table 2: MT performance of our systemsmeasured by COMET scores on the general test set
(top) and the legal test set (bottom). Compared to the WMT22 winner (Shapiro et al., 2022)
and ChatGPT. The score could not be computed for the system trained by de Gibert Bonet

et al. (2022) as we do not have access to their translations.

EN-AS AS-EN EN-MNI MNI-EN
OBT (baseline) 13.2 16.7 0.5 0.4
OBT+PseudoPar 18.4 21.8 11.3 14.5
OBT+PseudoPar (improved) 19.1 21.9 16.4 16.3

Table 3: chrF++ score of EN-AS and EN-MNI unsupervisedMT systems on theWMT23 test set.

EN-KHA KHA-EN EN-MZ MZ-EN
OBT (baseline) 29.9 22.2 20.5 16.5
OBT+PseudoPar 28.1 20.6 26.8 20.5
OBT+PseudoPar (improved) 34.7 26.2 24.8 20.1

Table 4: chrF++ score of EN-KHA and EN-MZunsupervisedMT systems on theWMT23 test set.

EN-AS AS-EN EN-MNI MNI-EN
OBT (baseline) 0.55 0.47 0.26 0.30
OBT+PseudoPar 0.62 0.54 0.55 0.40
OBT+PseudoPar (improved) 0.63 0.54 0.58 0.42

Table 5: COMET score of EN-AS and EN-MNI unsupervisedMT systems on theWMT23 test set.

EN-KHA KHA-EN EN-MZ MZ-EN
OBT (baseline) 0.69 0.44 0.57 0.41
OBT+PseudoPar 0.70 0.44 0.62 0.45
OBT+PseudoPar (improved) 0.72 0.50 0.60 0.46

Table 6: COMET score of EN-KHA and EN-MZ unsupervised MT systems on the WMT23 test
set.
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EN-AS EN-KHA EN-MNI EN-MZ
AuthPar+OBT (semi-sup) 37.7 38.9 55.7 52.9
PseudoPar+AuthPar+OBT (semi-sup) 36.6 37.9 56.1 52.7
OBT (unsup) 13.2 29.9 0.5 20.5
OBT+PseudoPar�→OBT (unsup) 19.1 34.7 16.4 24.8

Table 7: chrF++ score of EN-AS, EN-KHA, EN-MNI and EN-MZ semi-supervised MT systems on
the WMT23 test set.

EN-AS EN-KHA EN-MNI EN-MZ
AuthPar+OBT (semi-sup) 0.75 0.75 0.81 0.77
PseudoPar+AuthPar+OBT (semi-sup) 0.74 0.75 0.81 0.76
OBT (unsup) 0.55 0.69 0.36 0.67
OBT+PseudoPar�→OBT (unsup) 0.63 0.72 0.58 0.60

Table 8: COMET score of EN-AS, EN-KHA, EN-MNI and EN-MZ semi-supervised MT systems on
the WMT23 test set.
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A.2 TOOLS AND CONFIGURATION

In our experiments, we use the following tools:
• LASER39 for parallel sentence search and creating pseudo-parallel cor-
pora. We modified the original implementation to support similarity
searches in larger data sets and to support different encoders.

• Monoses40 to create the unsupervised phrase-based system.
• MUSE41 for unsupervised alignment of static embeddings using adversar-
ial training.

• VecMap42 for unsupervised alignment of static embeddings using simi-
larity matrices.

• XLM43 for MT training of most of our translation models (unless stated
otherwise in the text). Alternatively, in several experiments we used
Marian44 or fairseq45.
For languagemodel pre-training, we usemini-batches of 64 text streams
(256 tokens per stream) per GPU and Adam (Kingma and Ba, 2015) op-
timization with a learning rate λ=0.0001. For denoising and MT fine-
tuning, we use mini-batches of 3,400 tokens per GPU and Adam opti-
mization with a linear warm-up (beta1=0.9, beta2=0.98, λ=0.0001). The
models are trained on 8 GPUs, or using gradient accumulation to reach
an effective batch size corresponding to 8 GPUs.
For fine-tuning the XLM-100 model using the TLM objective, we use the
batch size of 8 sentences and train on 1 GPU. For fine-tuning the XLM-
100 model for unsupported languages using the MLM objective, we use
thebatch size of 40 sentencesperGPUand train on2GPUs. WeuseAdam
optimization with a leaning rate λ=0.00005.
The training hyperparameters were selected based on the related work
as tuning themwas beyond our computation capacity.

For evaluation, we used the following tools:
• sacrebleu46 to calculate the BLEU and chrF++ metrics with the
configuration sacrebleu -tok '13a' -s 'exp' -m bleu chrf --chrf-word-order 2

--confidence;
• COMET47 to calculate COMET scores using the default model
wmt22-comet-da.

39 https://github.com/facebookresearch/LASER
40 https://github.com/artetxem/monoses/tree/master
41 https://github.com/facebookresearch/MUSE
42 https://github.com/artetxem/vecmap
43 https://github.com/facebookresearch/XLM
44 https://github.com/marian-nmt/marian
45 https://github.com/facebookresearch/fairseq
46 https://github.com/mjpost/sacrebleu
47 https://github.com/Unbabel/COMET
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